DOI: 10.11844/cjcb.2026.02.0026
i E A AE ) 2424 3] Chinese Journal of Cell Biology 2026, 48(2): 522-530 CSTR: 32200.14.¢jcb.2026.02.0026

cGAS-STINGIB BT iR = E F g & £ 1Y
MRt

5%1,2 EHEEEM )%—rjal 2 %ﬂ]ﬁ]f(m* 4‘5]72%1’2*
(PSR EE R A B s e ot 8256 =, PP AR 010050,
2PN SR VA DX R 24 i AR ) 2 B R SR &, RRAIVE AT 010050)

HE IR B BRI B A B (cyclic guanosine monophosphate-adenosine monophosphate
synthase, cGAS)-F 4% 2 F #)i% B F (stimulator of interferon genes, STING)i# 354F 4 R K %A%
Sy, WAL RS IR DNARE IR % 5 Mg & & . AL RB T T %8Rs mIL R X
Falt g K AR RAFEERLEZOER. ZX A% H R T cGAS-STINGI® % 5 40 /e, % % Z 1]
BB PR BRI IEK A AR, A Fes) 1% 18 2R 45 40 IR 3K VA T R SR I A R
RAET IR,

XIF  cGAS-STINGIEH; dllfusE&; i

Research Advances on cGAS-STING Pathway Regulation

of Cellular Senescence and Tumorigenesis

WANG Miao'?, WANG Xianjue'?, YANG Zhiqing'?, LIANG Yabing"?*, YANG Ling"**
(‘Central Laboratory of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China;
*Key Laboratory of Medical Cell Biology of Inner Mongolia Autonomous Region, Hohhot 010050, China)

Abstract The ¢cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase)-STING
(stimulator of interferon genes) pathway, a central component of innate immunity, regulates cellular senescence and
tumorigenesis by detecting cytoplasmic DNA. Recent research has demonstrated that this pathway plays a critical
role in modulating both cellular senescence and tumor development. This review systematically examines the bidi-
rectional regulatory relationship between the cGAS-STING pathway and cellular senescence, and it elucidates the
dual roles of this interplay in tumorigenesis. These analyses thereby provide a rationale for developing novel anti-
tumor strategies that target this pathway to influence cellular senescence.
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PR R IR IR A B (cyclic guanosine mono-
phosphate-adenosine monophosphate synthase, cGAS)-
T LR IR F(stimulator of interferon genes,
STING)HEEEF NS R A R GEZ R 78, MU DT
S STDN A A G2 8, IEAE a4 4 D 3z A b
PR A R OGRS R A R AE &b L
RS T BB —FhgH g v PR S, R4 B3
PERIGTARE 1, (EORFF IE W AR UNESIANE /). Bk,
AT H cGAS-STINGIE 2 54N & (Y
1117 _HL 38 2 240 0 th W] B 1) B cGAS-STINGIE B 4 7
K7 1 (senescence-associated secretory phe-
notype, SASP)7r ik, AL, cGAS-STINGIH 4 /£ [i&
RAR T RAEE S AR, BRI S R b
PN RAFACMIR RN, ST FEAF R R A s rh A
L IRAE S R, AT e SRRt . cGAS-
STINGH % 2 JE 40 M 38 2 5 MR R A i) S5 5
WAL DRI, [ W0 B R S TR R L, T4
LR SRR T AT IR KR Lo A LRk
REZIES AN SRR T REM T, N
TERBE TSR LR g

1 c¢GAS-STINGIEEE
1.1 c¢GAS-STINGIE % ILESHH
cGAS-STING:# B /F A i s B e mg I, JE Rt
5 I B S5 DNA FFH 80 cGASA S 1 138 25, B R
o 255 W ) 2R 5 LA A 2L 5 95 45 R SR AR N AR . 4
WLTE P AEAE I DNAZ Y, 38 IR Y, a0 M4
WAL AT H I DNA, LR AMNEMER, W DNAY
. SRR TR . 40T AN AR dU B0 4 DNAR,
cGASEM T IRE G Z %, m— A Eg . JF
PR5F I N-3it (130~150/M %38 Fil— A5 Mab2145
o el R B AR ST A C-3im 4L Y. cGAS A DNAK:
Mg 7 2R B R Y R SUEE DNA S, SR AR
A S AR AL 5, 3T LA ATPRI GTP AR
A IR ZAX R S S0 23 - SR IR R
(2'-3'-cyclic GMP-AMP, 2'-3'-cGAMP). %4> 71
G 2 A NS 58 B E , BUE STINGTE 5
AR M, STING AR —Ff 8 A7 T N Jof 199 ) 2R Ak % i
B, BSR4 5 A4 45 A 45 38R C-
Ui FEEB . TEE SRS T, STING UL AR L
SAETE, (KEE E B g 3k 2 18] (1) 407 PO AH ELAE F DA
T AN [) = SR A 45 K 35k ) 149 4 V) A T A D R 4

HAaEMED, 2-3"-cGAMPSS: & I 0 A J W JiE
(1) STING, Fifif5 STINGAK 4 i & i 584k, T8
STINGZE AL« MR 5T X 8 i B 37 7 o 3] vy /R Ak
1A, ZE4E TANKZE & 1(TANK binding kinase 1,
TBK1), %85 TBK 1R 1L STINGFI T4 & 15 A1
3(interferon regulatory factor 3, IRF3). X1l
YEFIEIRF3Ae4S — A 5 A B4 ik, JE B 1T
1 F (interferons, IFNs) A1 2 il 32 [K (interferon-
stimulated genes, ISGs)[1%% %), ¢cGAS-STINGAZ/)™~
R IE R AR S (5 Tl HAZ O I R R
DNA-IUE STING-/ A T4 K "D REAE i &R 7 48
MU EREGE . TR AH ) R B N R
1.2 ¢GAS-STINGI&E £ 4Hpa ar iz H1E P HIER

cGAS-STING I8 % i ik 15 5l 248 B o+ (1) 72
DNA, E3— RIUE 57 T AR, S a4 i r iy
B BV, FEEFGET S R I A, 4ERra i
FEOR A S AR IE 5 A B T A& 1)

cGAS-STINGH % 18 i 41 ] ¥4 5 g 14t 14 XA L )
A A MG, fE4 IR EH, cGASIH IR
DNA J& #0% STING-TBK 1-IRE3%1, % S 1R T4 &
(2T I 51 K p53/p2 141 IO A Hf o S BT, [] I 184
SRCDS* THH M FTNKAH (1 408 2 78, AT 410
il iR A A . AR, TERMRE A T, cGAS
22 SUV3H 1/, 3 kA R, #2315 DNA H 24k
VA5 1 UHRF 145 &, T $8E E TE AN A% Y, 1%
ELREAMH T M5 cGAS-STINGE 4 (1 ThAg ; 75 41,
cGASIE T i# 1t Z-DNA-ZBP1-RIPK AE £ i {5 5 4l
(%5 5 Bl T B0E STAT) R 16 ik G2 W #0331 () 422
R 32 Je 8 200 P P 30 i 0 LT BB A H SZ 4 2 2
cGAS 1V 2 i 72 A7 (151 L A% P i B I J8d i) LA 2
IR 5 I AT .

cGAS-STINGIH % 75 5 1 H Wi xF 175 B i o2
DNA B 5 A 2 EE 10, cGASH L B Bk
DNA(<45 bp)HI4s &, BEFA 55 H W% 08 A Beclin-1,
5 G PEHL S Beclin- L NI R 7 E#F R, A B
W IR )3 2% o I B BR L WA BT 0 5 T
TR FUUEE 3-BA R 007~ A, LALKSK I B [ AR IR T M T
Be A M 5 XOUEE DNAMY . 7EZH I Y STINGTE#7 cGASHL
55, STINGH iz i FE K #6 T COPILE A ¥ 1 ARF
GTPl§IZ 5. BRI S, STINGM A J5 547 4 Py
J5i WA — s ZR A ] [X % (endoplasmic reticulum-Golgi
intermediate compartment, ERGIC) VA A 5y /R 844 7
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cGAS-STING  ##% i3 U5 M 5T P ) 53 DNA, Jia 21— R PIE 55 SRl s, BEmid=anig i, B, 20 ais dirt.
The cGAS-STING pathway initiates a series of signal transduction processes by detecting abnormal DNA in the cytoplasm, thereby regulating key cel-

lular events such as proliferation, autophagy, senescence, and cell death.

El1l cGAS-STINGIE K EIZ4Mpa &

BREERESE R 6112250

Fig.1 Schematic diagram of the cGAS-STING pathway regulating cell fate (modified from the reference [6])

STINGI# ERGICif it WIPI2(Z 5 H W/ IMATE R/ %L
WREEZ )WL, Dy B RS54 8 H LC3H)
SRS MRS HEERE . X — IR AR T B bR
EVRA IR BEJS , LC3FHH R DNAFI
JRAREE [ is 0 2 AR, B VR S I R AR R, 32T
TR BRI AP XU EDNA BA R SR AR XUEEDN ALY,
cGAS-STINGH % fir 2 41 o 48 T AL 2 Fh %
FE, W R Z PR BAE TR, AR T SRAEI A T
AgaT 2, ERE TR, cGAS-STINGIHE 6 1] LA
W Z ALE R s T KA. — 7T, 4
STINGHE B, 7 6851 A P X B B o X
NSRS St — Pl i BCL2 i (I p A e R
HH——BAXHI BAKT /- S IEAL, fil ) Sk 47
OB 55—, TR AR 2R iR DNA
XA PMEN cGASHITCA , 3 — D30 cGAS-STING
P, T RCE R GEIR, dE— P g T, 4R
M, AR, W caspase 16 V) %] cGAS 5
IRF3, Mifi40#] cGAS-STINGIE B (3 P, DL Gt
JEE 1R 9 RE SO U3, SRBE I T 0 — R FE 7 PR SR A
RIPK1. RIPK3FIMLKL &% 5550 T 1) & 2

3. cGAS-STINGIHE B £ PR FE % I T b i A 32
BARIUAE PN T : — R8I T IFNs K s 858
[X-¥- (tumor necrosis factor, TNF)&5 4 14 4H i X -1 1)
FEAE NSREME R T B SR e B A T 5 1
TR I RO RIPK 25 S , A 30E 4 i SR A0 1
TR AN ETAE Ry — P S RE 1 20 B AT T A5 2,
HR AR ERIT caspase K& A MG RE, X
BUR A AR RGBS 2 T U AR cGAS-STING
WA G REES ST, (HE ] UET % S IFNs
T TNFEE 28 P20 i PR 7 3R, Tl bR TR
A0,

cGAS-STINGH i 71 41 il fy iz % 5 20 25T 1
W IR S S E AR o %30 A A A 5 4T
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VA AS HHLHIAE T80 p53/p21 8 p 1 6/RB1E 5@ %, it
M0 Gi-SHA#E ol 2 b COK- 41 B A IR I B &
YIRS 2 AR LS R BUAARFAIE K
TEAS P, AR TTASEIN , Yo e 5, 4o iy 4
T BN 2, B 2 4IHH A %41 )2 8 H Lamin
BIHR R 202, teAb | 3852 4 M SR 30 A V5 23
MRS, BT SASPAr bt % . SASPAE % 4l il 4 ik
2R A T (iR 7 b P2 SRR . X
S PR 7 AT 4 55 S e AN L DAY R 3 2 AN, X 4R RE
JFRH RS R EEER P, 525 Jimks
Th e B 175 T 10 B2 i M 5 22 A iR AR M 1 T 10
g 2 T ) R TR TE 2 IRAN I o 345, vt
R 2 S DUT 5 35040 f A 1 58 445 i i
FIR B EEZ P JRu R AR R 1) 5, ORR R
SEY, TEHEERES . PURT IS E%E
JIRIB AT 5] K 2O, FOERIWF R, EIRREZ T
AT [PEAE B AR B A2 IR T I B R A
AR T 3 2 R 2 4 RA . 4
WAL R RIS, — 7 B S
et T 975 730 200 L %) AN RT3 4D 4 R B £ R R 3 i 4
I ST B P AR R e B A o 7R (A p 16 R p2 1) [ 3R TA,
TE BT $0 g A 1) E SR Bk U8 S — 5 TR
O T AN M I 2 e, A 20 P e 40 i T 43k
SASP, /30 Eg ik e i — ks, ARl SASPA
B FREER T 185, TR, REBMEER, 50
i L (S 9 7
2.2 cGAS-STINGERFTMp=E
cGAS-STINGH % /2 75 5 F i 17 41 e 3 & 11
HE @Az — P, BT /R cGAS-STINGIHE
VA2 4 M 52 22 B DR BEEHE , U T X ¢ GASHE IR R
(cGAS™)JFEAR/IN BRIV B 2T 4 4T it F A4 o W 5% AR
T EF A R HR A, cGASHRFAZAN MR I H 3 Ik 11
H R MK AE A ERER) . ok R 2 RIE 4 R B, 75 5 1
PERZ . EEFESNEZNIUERITE SN EZ
BEAY R I PR LE cGAS-STINGIE B 35 P2, cGAS-
STING-TBK LI B35 J& , TBK 1B L I8 kappa
B X F-#4 & (inhibitor of kappa B kinase, IKK), i
MR A% A T-xB(nuclear factor kappa-B, NF-kB)[]
$#1 2 [ (inhibitor of NF-xB, IkB), 5 #IxB ) B fE Al
NF-kB - ZE AR BB B3 0 ) NF-xB15 538 i 4k
FFSASPI 4l , MM T IF 4RI A 1 35 22 BH)(E
2). STINGIJBEE AT LLE B F (5 5 7 5 R

N, B 4 FEFNs 1774 FISGs N 3%, i S Al
2, Bt LRI T — %S R RE RS
B3 % cGAS-STING-PERK-elF2a, STING# cGAMP
BT I P P 5 My 35 5 PERK ) it P SR 465 o ek
R T BAEH , %45 M3k B P 0% PERK, [l
Je AR AA 1) e TP 200 25 U0 1] 41 it A A4 7K S R mRIN A BH
B, AH AR S R 4y S SR FIAE TR AR G B BT I &
RIS HI PR TEZ LT, Bhah, B —%E RS
()38 1% cGAS-STING-IRF3-RBHHL M 82 5], 7E 254015
S:9H i DNA$ A% 5 ¢cGAS-STING-IRFE3 38 14 #1807
IRF3iH 1 5 RBHAEE B IRF3-RB-E2F 1 & A 44, MM
FHAS CDK4-cyclin D-RBE & &RITE R, FH IR FF RB
RT3t 2 e 1) % A RS ] ARV &4 B R B, AT 35 5
L N FE AR, JIANGEEP W 7 RN, TEH 2
R RAN A, cGASHI STING R IE /K &
R, X IR G LRRAAR T BEREAT B DA G A2k
PLAARRE TP 28 KA DNA (mitochondrial DNA, mtDNA)
S cGAS-STING-YY 1E 5 il Y'Y L& 97 A I 5
g iz % 5 H 2(lipocalin 2, LCN2)ZRIA 6 % K+
HARHLH N - BEERL I STING 5% K 7 YY 141 &
YER, I MY Y LA AL, BRI LON2JE R
T HHIVER , &4 S EUR R R4+ LCN23&
R KPS, e A .
2.3 ‘AR EIAT cGAS-STINGIE R

H 17 cGAS-STING R sl 4 i 32 & [ = AL IAT)
ARERATE RN R, A v DA E 2, 2240
i J 5T G €14 DNA R S 8 AR B 1T DL IR 307 cGASS-
STINGI&4E, /3 NF-kBif{b i SASPI)™ 4, MM
SRR RS AR OGR AL W, fERIT R F 0
sz J57 I3 £ L R 2L €8 208 I A 3 2 A v, SASP
(K7 IL-638 1L cGAS-STING Al NF-«Bif i 1F [ 1 £
FHom LA 2 A BT IR 8 B ) O (R
SRR T4 M R ) S5 DNA, 5] 4n 241 i o G €2
Ji B (cytoplasmic chromatin fragment, CCF). c¢cDNA.
mtDNA, 5% DNA #5065, iXu
DNA YA 0% cGAS-STINGAE 4 1 5 S0k e . 5
LM DNA R HEBORIE A REH —Fl:
H—, EELAMMIZLT ZE A Lamin BN S EUZE
BRI, Mk e 5 B AT PIRAZ R S 8 A s 3 3
CCF £, 58— KAf JulF-1(long interspersed ele-
ments-1, LINE-1), 52— F{E5EE 4 H i K7 55 (1)
T SRR PRI T, LINE- 14T T e S AE 228 1 2
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A R R EREE , T AR R mRNARE O
cDNA, ILAEFEZ R T LINE- 1% 5K 1 (R nfie
3t 7 cDNATEA 5 (AR R 55 =, BT W ek
WY, A 32 JIR] , 0 2R AE RO AR R 2
AP I ZRL AR S M IEIE 1L, HRAOC HEER I BAX AN

BAKJEEH K ALK mtDNARE B 4H i BT e, Bz,
Y1 52 21 P9 YR B AN MRS L M5 Y DNAE 23
I cGAS-STINGIH B T EU MM FEE , 1M 3 240 S i
A B R S ST A DNAY 22 Mk — 5 305
cGAS-STINGIH# 4%, & H1E [ it o

Oncogenic stress
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/ﬂ IkB
-
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19 &@ egrade
)\ %/ IRF3

RENO)
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o =
® |_>LCN2,T\ ERGIC/Golgi Induction and maintenance
"’“’“ / of cellular senescence
®LCNZ promoter c
@ O €—O "gjjﬁ
>
W = (0SS
E2F1
$ oregeeeed
. IRF3 |_> Type I IFNs, ISGs
' or=deneed
- (/ /. Nucl NF-xB //Y SASP
Vo 7 O b @@ ®d

CGASIFU 4 [ B 5T A 57 B DNA, 5 cGAS-STINGHl i, Jf il LA R 22 3 4% 175 S 40 i 18 2 JF I #SASP: (DTBK1-NF-kBli 3% 2)) 2 i 56 2 [t
SASPFFZ:73ik; @TBKI-IRF34 S S TP 28 BT PR3 RIBAE F e SR e i 41 3 & ; @PERK-elF2afih 2 540 1 58 % 15 3, WIRF3-RBAS 54
B AR E; OYY IR IREIRIE S AR L . R, 22008 S a G cGAS-STINGIE . B IE S5, 4EFFSASPAilb. 4L
Fi Sk et 20005 BEIT.

After recognizing abnormal DNA in the cytoplasm, cGAS activates the cGAS-STING pathway, induces cell senescence and regulates SASP through the
following multiple pathways: (D the TBK1-NF-kB axis promotes cellular senescence and sustained SASP secretion; @) the TBK1-IRF3 axis initiates
type 1 interferon and ISG (interferon-stimulated gene) transcription to enhance cellular senescence; @) the PERK-elF2a axis contributes to the induction
of cellular senescence; @ the IRF3-RB signaling cascade triggers cellular senescence; & the YY1 transcriptional regulatory pathway modulates cel-
lular senescence. Furthermore, senescent cells establish a positive feedback loop by reactivating the cGAS-STING pathway, thereby maintaining SASP
secretion. Red arrow: promote; red cross: block.

El2 cGAS-STINGIERS5MRE BifX R REE(IRIESETHA6,37-39112 )
Fig.2 Schematic diagram of the interaction between the cGAS-STING pathway and cellular senescence
(modified from the references [6,37-39])
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3 c¢GAS-STINGIE % 5 At = & 7 B

FHEIER
3.1 cGAS-STINGIE & xt by H1E B

cGAS-STINGH I % ¥ K HAE S8 R e i
VEFTIAE AT, 2 e KR A R 1) G 2
5. s gn i P9 AR 2R 1) 7 DNA(WIZE K& DNA
MR JE AT E P A4 1 DN A F BCAE ) REAS 0T
cGAS-STINGIEH . cGAS-STINGIE & 7E s & =
AR RE R PR HEAE A, 38 a2 A Re 4 4 A
% 75 T S ) Tt e A 455 A T 2 e () 0%
PRI F 140 SCEAG S (AR 20 B 0 RE
fil % VRS- 22 R 28 40 i IR 7 RO RE A, 5 350 a2 4
PRI e (O R S 1 , AT 3 it e e g S e
0] e 3 P 20 3 R4
3.2 HITIE T cGAS-STINGIE B&1%5 S Bh 25 4 By
=E

AR E IGIRATIT R B, 2 7 U7 I
iR o AR5 oA 2 52 R 97 11 T 98 2H 23 v 4 i s <2 g
J7i DNA B AR I G I3E 2 91 J0y T SR e Va7
BT, HATIGR 5 I — &7 259 & 2
BEEGEA PUREZ . PUEPIAER. EYED
DAL 2555 . 1K S b7 25 RO G T Il i A
A (LA DNA . 20 DNA$ 5 AR A5 5 Ik 4
DNA X B DN AU W24 1 b AR S £ 1245 52 0T LA
S EC AR P B2 TR (PR T T OO W2 O
WIREAZ AL, B % S AT BRI . SR, 1%
JERTRE 2 B R R e BMAR fE 02, FEUCCFr=4:f1
FAR®. cGASTAMGHMIH ¥ CCF, % cGAS-STING-
TBK 1-NF-xBifl #1755 SASP/3ilhs , M i1k ik 4 ity
FH P, CCPUEIEN4 DNA. yH2AXHI S Je (0 )5
FrEY) H3K9me3 A H3K27me3P" ., iz il H3K9me2 il
H3K27me3 [ 80 EE $ 1) 71 o] LA KRR 2 b AR 32 505
iR A B T 22 1T AN P2 4 SASP. LR A H3K9me2 I
H3K27me3 130 F01) 71 ] A1) 5 2 48 i H CCF )
FE%, HETTH0H] cGAS-STING-TBK 1-NF-kBif 4, BH Wt
SASPIF=A BN, BRI, 7R3 2 MR A, 20 Ao
WCCFIAE RS RAR, R 4EHF FLSASPHFE: /M WA IR B
IFIRBE R .

3.3 cGAS-STINGIEIFE SR MMAnET & (8 i3t hiE
B R

FERMRE G YT IR, cGAS-STINGIE B (1305

TR B R o SRR RIS 2 Wy R B

SRR VA 7 B ) cGAS-STINGE % U /E - il
a2 Wy ] 38 PR U VR T 1 5 1R 3 2 AH ¢ DNAYHR
i RIEPUEEIER . Hm i 4ERFAN A% Lamin B12%
IR0 DA AL IR 54, 3/ EX DN ARG 23 i T A%
[1JCCF; 1@ CCF/™F [ cGAS-STING-TBK 1-NF-
KBS S 0, V> SASPHY /A, AT HETHEEfiE i
ITHIE R 22 A PRS2 [E)RE, 7 LR Aot >
CCFRIFA4E, ] cGAS-STINGIE I 0% 48 %
i1l SASPIX AN 1) FL e 4 A2 22 g i 21 ZH B
LT H1)77) SAHA (suberanilohydroxamic acid)f] A
FF 1697 S Fh 2R B Wi 35 5 2 Pl 4 e 3222 Y,
FE/NA L e o SAHABUR DN A4 S5 W 155 4 i
W, G/ AR CCFRUER, &
A ) CCFif Y ¢cGAS-STING-TBK I-NF-kBif i {f¢
BE SASPy W , 3 T I 3 P ik B 58 HH 8 1 A (1 2
8, MG I gk 2 . SR1MT, SAHA 5 EZH2411)
TR L AT R CCR =R, i kI SASPH
53U, Y5 SAHATRIPTIT IR 4 i 384 5 1 FH - 40 i s
)T 3 s
3.4 cGAS-STINGIE %S84 f 3 & HH i
NERELZRE

cGAS-STING-TBK 1 -NF-«B3l % #7183 m 40151
Jae i R JE e DA R 3 Ay BROHE ) 2 R . TE 2
B, PARPHNAIFFI CDK4/630#I B A VR TT
I 5 p S 1 41 i 3 2 (GLAFAEZ — J2 Lamin
BIEHRIETFI), 5/ CCFIE £ . X% CCFEUE
cGAS-STING-TBKI-IRF315 4, {i£ik SASPIA ¥
(RIRE TR, 3 T 2 98 PR TR 85, 1 A e e s M
ML, B M &5 e ik e B9, R 2 H0m B3k
TP O B R B AR VR T A4S AR R AR R T
IR PR AT, B RS SR TT B 28U N E
WREYN, FHmA )R A 2. F
FER I, 1E [F) 5 5 2H 5 B 28 va B ) S O e
PR Y6 7 22 75 5 R 4 i 5 22 9 HAE VR IT 5 11
JIF g £ A A% B DR, 3k TGS cGAS-STING-
TBK1-NF-kBifl . 1% 38 5 1) 38000 e 4 2 22 b s 4
73 WA E 7€ 1] SASP(E A HE CCLS. CXCL10A1
IL-6Z541 B IH 7). X L6 KT R 75 T H e Al M= Vi
S5 e S G 92 A 2 A BEL BT VR T BBURK B 24 ot
5 G LI R R OO, 2 B TIR, TRk B
% cGAS-STING-TBK 1-NF-«Bili % , i 55 ¥ 4l i
I3 U2 FAS 5] 23 ) SASPIRI 1o 3 6 AN [ 2
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SASPE T 75 i 2 AE ke ik f2 b R 35 B 2 HOW
EIERER

4 cGAS-STINGIEEHIFTF
cGAS-STING I % {8 7 718 i 15 1 41 B ot
W DNABUE B H R B, S 59 RE2 . &K
E S IR A SR A R . H AT, $E 1 cGAS-
STINGIH % [ 259 & EALHE cGASHIH A1 STING
BWENF . /Ny cGASH: S LAl PF-06928215
A3 AL 3 4 1k 45 A B OUBE DNASE & 07 4, 2%
BELBT DNAR 5 5 (0 cGASHIIBGE , HE ) i
STING-TBK1-IRF315 5 i (1) B R A 0 I s B, e 2%
253 B cGAS-STINGIE I 57 H s A S i 4n i
XU, AR, cGAS/N T I VENT-
037E R 401 2L BEARIE /D BROBE 2 Hh SR I i R 4 A 44
WL, B LK T/ANRMAG, Tk efd
BB RSN — R T I SORE S B R B 1) B g 1
o A, IR NI RIS B cGASHIHI
T BH W cGAS 5 DNA ) 45 & s i) SLmg g v,
#] R HESTINGAS 5% . STINGEL B 7 = 55 NI
T FF R (cyclic dinucleotides, CDNs)Z& )75 Fl19E
CDNsZR BN, 18 I 40 SR L A4 B 5% STING
AN E, WOE N TR S R SRk R G L
MK-145 /2 —Fh 52 CDNs& STING 307 , 58 Wi
S MK-1457] DL 5 Mg 58 4918, H 531 PD-141
AT AT AR 3E T 40 BRIR I K 3 v FL b e v 1 20
2-FFEIR IR N A CDNsZK STING#B) 771,
B Pk 3 S 2- 2 2 2K O Ik e mT 5| A 5 2 P P R v
P, SER e 4T IR O BT R AT AR R 2R O
IE Wy 2| CDNs R BN MSA-2, 1/ R R 28
CURE G s RS e 2 ), i ¥ 254 N STING
W5 R AE R, W A0 S STINGHI R e AR, [R5 ¥
77 TBK1-IRF3HMI NF-kBXUE 55l . 1% F2 i 2 1 0
IR R b8 SR 15 7R CD8* T AL . NKZH g AR 2%
RN TG SR , 51 R KRG EDUNE %%
Wi 7 1000, Il PR BT cG A S s BE 2 TR g ] g
FH SUV3OH 1 #7115 ¥ cGASH 4L, B4 PD-1411
1) 7] 488 5 e 28 N T G AS B TR I R Y bR
DA STING #3751 5 CD 1B 80 751 18 58 fih 98 4
PEIZE o 7 B R FH N P I 3 SR, 7 VR T W18
STING#EF A8 3 % N, Ja BIMPRG T 7 %
ey STINGH I 71 LAF= v AR 85 14, R 304 I

T cGAMP/K-, S 3 I T 7 %8, SEELAMA
REHET T, AL, cGASHIMHIFILEIRIT H & 4%
PN PRI AN ZE A S S5 D7 Tt R B T R4
T 5

5 NESRE

cGAS-STINGii %, 1E N5 R RGO
YA AAE VR 0 M 57 DNA F- i 2 %928 Js 8 o 473 v
SHE A, IOTE A 5 32 1 VA 5 R0 g 1 Rk A R R
HREEZKEEMEM . ok, BULITE v
TBIT IR OTF B, i 75 T DNA 2 AL CCF, #E T
B cGAS-STINGIE % LA Fr -1 S PR gl 35 2% ;
T 7E 32 22 IR 40 B v RE B2 30 [ cGAS-STINGE 5
Al — 215 S SASPIE e

cGAS-STINGIH % £ 1 45 4H i 52 22 A g v
ST P, WONTRATTIT A 108 % 1V e TR
JTHE AR ME TR R B, MBLIENER
cGAS-STINGIH# ¥ 7 4 Jf 5 & v (1) Ak o 1 Wl 5
FoTeit, THRRETHAELLZZ BT
HAE A . XK A BT AT BE 4 T M B A cGAS-
STINGI# B fE4H i 52 2 R I 2 2 IRAEH, 3R
FF Rt o 128 i 0 ) 7 VA AR R RS Al . LUK
NEE )T I RO B AE W A, DAY AT 2 A
JE I BT cGAS-STINGIE B R E FUI L . X
s W bs B BT AR IR & A 2 R e R
I7 ) BT, IR SR MR IR T I AR R A
o X —F B, PR T LT IS cGAS-
STING:H % 175 5 i I8 41 i 32 22 S , AR AL
HAEMIBE LA IR IT P AR, MR YT AN
A KL IR 130 FR .
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