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Abstract  Gastric cancer, as one of the most common fatal cancers worldwide, has a low rate of early diag-
nosis and a poor prognosis in the advanced stage. Although chemotherapy can improve the quality of life of patients
with gastric cancer to some extent, it still cannot completely cure the disease. Recent studies have found that the
TME (tumor microenvironment) is crucial for the development of gastric cancer. Autophagy, pyroptosis, ferrop-

tosis and tumor immunity in the TME interact with each other and participate in immunotherapy. Their inducers
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can enhance anti-tumor activity in a way that synergizes with ICIs (immune checkpoint inhibitors). Therefore, the

combination of RCD (regulated cell death) inducers and IClIs are expected to become new targets for the treatment

of gastric cancer. This article first reviews the autophagy, pyroptosis and ferroptosis pathways. Then, it elaborates

in detail on the roles of autophagy, pyroptosis and ferroptosis in the progression of gastric cancer. Finally, it lists the

synergistic effects of autophagy, pyroptosis and ferroptosis inducers with ICIs, aiming to achieve the goal of gastric

cancer immunotherapy.
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When AMPK is active or mTORC]1 is inhibited, the ULK1 complex transitions to an active state, then activate PIK3C3 complex. Binding molecules

are recruited by generating PI3P, then LC3 forms LC3-II, which integrates into autophagosomal membranes and promotes their elongation. Finally, the

outer membrane of the autophagosome combines with the lysosome, creating an autolysosome. AMPK: 5’~-AMP-activated protein kinase; mTOR: mam-

malian target of rapamycin; ULK1: UNC-51-like kinase 1; PI3P: phosphatidylinositol 3-phosphate; LC3: microtubule-associated protein light chain 3.

-p: dephosphorylation; +p: phosphorylation.

E1 B S FHLEIER (R B B Figdraw#2$], S H1D: AYPAS3ddad)
Fig.1 Overview of the molecular mechanisms of autophagy (by Figdraw, export ID: AYPAS3dda4)
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The classical pyroptosis pathway is caspase-1 dependent and relies on the activation of inflammasomes. In the non-classical pyroptosis pathway, cas-

pases-1/4/5/11 are directly activated in the cytoplasm by LPS. Activated caspase-1/4/5/11 cleave GSDMD-N, finally inducing pyroptosis. DAMPs:

damage-associated molecular patterns; PAMPs: pathogen-associated molecular patterns; IL-1p: interleukin-1f; IL-18: interleukin-18; LPS: lipopolysac-

charide.

B2 SRS FHLHIERE (A E fBioRendertal, #%1055: AP28XYQBEX)
Fig.2 Overview of the molecular mechanisms of pyroptosis (by BioRender, agreement number: AP28XYQBEX)
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E3 Sk TR TR (A< B A BioRender# i, $%4XF5: PA28XROXTJ)
Fig.3 Overview of the molecular mechanisms of ferroptosis (by BioRender, agreement number: PA28XR0XTJ)
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Table 1 Summary of inducers of autophagy, pyroptosis and ferroptosis
VAl A sET U5 HICTs i FEIfE AL RPN
Inducers Forms of cell deaths The mechanism of synergistic action with ICIs References
PARA Autophagy In combination with PD-1/PDL1 immune checkpoint inhibitors, change TME ~ [14]
FLOT Autophagy Enhanced expression of LC3B, decreased expression of PD-1; related to PD- [16]
L1 positivity
COF Pyroptosis GSDME expression; reconstructing TME and promoting aPD-1 checkpoint [33]
inhibition
IBI315 Pyroptosis GSDMB expression; inducing T cell activation, combined with PD-1 check- [34]
point inhibition
HIC1 Pyroptosis GSDMD expression; CD8" T cell infiltration, combined with PD-L1 check- [35]
point inhibition
Simvastatin Ferroptosis CD8" T cell infiltration; PD-1 and PD-L1 co-immunotherapy [49-50]
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