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SR FZ A AHBEsATE T P HIIER

et Ew' RWW PEAET TERT
(BRI AR 2R, Ayt ST A 5 500 T 5655, B 650500)

WE Ak (epigenetics) Z 48 EDNAF | N A A B L 69 ATIR T, B iTDNAF AL, 0%
G isH . B ARNAF AR IR A Rk 5 A Bk e T 35 B 40, S EA SN, S5k A
st A G E S P H TIEA L BAE B M I L P BN AR, R AL PR R A B
. BRI T (ferroptosis) 2 — AR B T RS ML B Ak B T o9 FT A e —H X, AR AN, &
LR I 4w B3t Sk L T AR A SRR, Rl HAVIB 6 T AT R B ). R R A I, BLAEDNAT A
16 RNAY 26, 405 & 1540 B 3E % ARNAZE W 49 % FF R LT AR AUk F2 98 4% It 78 am J 4k st =
KEZTZR. CNFraskit T4 X IR 69 &K, AT x5k T 53 09 50, A %76 I &
R AL, BT, RIRAE R FF LRI B @I AN EZRE. ZEEEELYE
IR AR TU T AR K ) R IR A B S R, B A B IRARL T R ALE] . A FT A e
AR AL IR IARIE, FF 4 AP I 04 97 F0K- 69 ) 37 A3 64 Tk,

KR R AL, BRAET MR R AR

Roles of Epigenetics in Regulating Ferroptosis in Tumor Cells

GUO Honghao®, ZHANG Yingru’, CHI Keke, SUN Jianwei*, YU Zhouliang*

(Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences,
Yunnan University, Kunming 650500, China)

Abstract Epigenetics refers to the reversible and heritable regulation of gene expression and phenotypic
traits without altering the underlying DNA sequence. This regulation is mediated through mechanisms such as DNA
methylation, histone modifications, and non-coding RNAs. In recent years, as their broad involvement in biological
processes and potential in drug development have been increasingly recognized, epigenetic regulation has become a
research hotspot. Ferroptosis is a novel form of cell death dependent on lipid peroxidation and iron ions. Recent re-
search indicates that various epigenetic mechanisms—including DNA methylation, RNA methylation, histone modifi-
cations, and non-coding RNAs—play critical roles in regulating ferroptosis in tumor cells. They affect the expression
of ferroptosis-related genes, modulate cellular sensitivity to ferroptotic induction, and consequently influence tumor
development and progression. Furthermore, abnormal epigenetic regulation is an important factor contributing to drug

resistance in tumor cells. This review aims to summarize recent advances in the epigenetic regulation of ferroptosis,
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providing a theoretical basis for understanding its mechanisms, exploring new targeted therapies, and inspiring innova-

tive approaches in tumor treatment.
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FMEAE B2 TR TEA SUE DNAREE 7 41 1)1
ST, @ DNARFEAL, HAEABIM. et
P B0 AR i A RN AT 45 S5 L i 4 2k DR SR GA 1Y)
AN, X LR A A dr il AR, k5
TR R R, 5 R A S R R T
KB, wRFLR, JLPAE A TR N SSE th #
FEAE R AL R I S, 5 R DR ) AR L A 4
H, K5 e AP

BRAE T (ferroptosis) & — P ER ORI 1 i B i
A TR BV BET:T7 20, HAR 5T A2 20 i 25 4 A Ty
Ae 44 8 AT B, BRAE T — Mk AORS 1:
IRE P PRI BE , FAZOoAL ] 40 i N R o 440 4)
UG 2 AL ) A AT 2 R AR, 2 B0 R
SEREVERRIR o 120 B E AU B ) (3 1 AR R
PEER)IRBN , H 324 Bt H ki S AL Y18 4(glutathione
peroxidase 4, GPX4). P& /4 &R = W] Fr iz ik
(System Xc)SEPuE b R HI M55 A4 . HARTRIE
PREEIRAT P S sk I P E L S T R =
SRR O, g AT T AR, 2R
T ANAF: I SR (10 e 0 J 458 SR PN 4 i o IS 2, i 3%
AL RLARARAR GG /)N, I3 FE 3G I g9/ B3 5%
A IR DL S AN AR R SRR AER

H R AE TS A 3 BASK, AH OC B 70 o 1
Ko, JUHERIE T A MR a9 7 T AR B R A A
IR o R A xS 8 T S A R B ke, &
RN 25, AR BE T WS4t T — 2B VR T
WAV, AL CAUEST, AT B IE T
SR EE KL S ERPUR ARG R, 6
ROOR K am f 14, (EARVE R 2, Bk 2 HiE
PR B, VB AL N A % 8 T Bk IE Tt A
(1) 5% B 5 DR R0, 52 i 400 PR G 2K B0 1 B AU A
R, SRR BB AL R IE T L, AMUEE
TIRATR I A e AR, O R BT RS
()3 AL IR Va7 SR RS SR At T AR BB A . BRI
FAREAE AL T BIALH], R T i 5
A] 24k ZVERFAE, DR MR 24 WA R RH R S 5 1 T T
TRk A ) L

epigenetics; ferroptosis; tumorigenesis

1| ST A

BRBE T 1) R A B DDA T i Jo i 4804 AN 2k 2
THIRER R, AU R 2 B, e 4
WRBRAET R B IR BN R 3 1Y, T2 2 AME AR
[ ER % i (polyunsaturated-fatty-acid-containing phos-
pholipid, PUFA-PLs){E i 4 & B (lipoxygenase, LOX)
AL R A B PUFA-PL-OOH I 440 4 17,
EX— R, Z AW TR (PUFA) 5 ZEH0E0E
T RS DI M LR AR b, 7 AEiE I AL S N e AR
PEFRIEYIST . AH ORI B L35 A B AR L 4 il A5 B
4(acyl-CoA synthetase long-chain family 4, ACSL4)#!
T3 LT3 IR P9t LBl 5 5 % # 1 3 (lysophosphatidylcho-
line acyltransferase 3, LPCAT3), ACSL4¥PUFARLH
4 i PUFA-CoA, B J5 tH LPCAT3 R4 B I A% iR
T 5 T 1 B AL FIPUFA-PLs!' 7.

FAh, AN BB T KT s AL AL BE TR
B D9 M e S AR A A RIS Y. B Tl B
Bk A %2 MR (transferrin receptor, TFR)IE N 41, 754k
W SRR R BN AN (Fe?). Fe E4H ML A
AFETE I AR B B Al AE, W R s R e
[4nSLC40A1(solute carrier family 40 member 1)]HEH
R . BRIKF B B 21 7 I 5 A0 M b 4E R AR E
ML T K AR, Fe* R B EIE N, Feil
LA (H00) S, TR E R AT R4 (reactive
oxygen species, ROS), X — i FE##5 A Fenton M.,
RS EASR AR, TR BR I 2 LOX ) 4 Bl A
1, DR i o A A A

GPXAEIIYIE T R EZAE . fFoA—
PR 1, GPX4REWS R A7 # 1 [f) PUFA-PL-OOHI%
J5 A O # (¥ i B2 (PUFA-PL-OH), LAR; 1k i it ik
SRR, R4 A0 e 2 E AL 1 T IR
(GSH)YE A GPX4 1) b £ 4 K7, i B System Xc~
[ SLC7A11(solute carrier family 7 member 11)f/
SLC3A2(solute carrier family 3 member 2)41 il ]/ 5
(2 2R / e R T v e S A i i B 4B A 0 1
SERAE T 1) R AR AT E i B A ) GPX 43 1 B ]
FEANH System Xc HJZhAE, FEARGSHK-, et
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Hg i AL, R AR AET R

EARE R IR, BOFTHE TURY], R AL 1
RENE S MR AU T A S B L DA 0K, U7 4 X 2 2
B A U A R R . X IR RLR DY
AR fl R D R OE T F A LA SR B3t 1R AL A
WO T I TR AL (U SRS SR L 1 TR AE (10
B

2 DNA/RNAREALAZIHIT AR ZRAETATE
TREE

VE R IBAE 7 1) H EZAE T A, DNAF AL
(DNA methylation)F1 RNA H 24t (RNA methylation)
FERE A A AL T B R R H
52 B Y IR S W] I I 2 B A [ (1) R A,
AT R 40 G ER AR T B B, 8 O A
TBITHE A
2.1 DNAFEK

DNA AL F 2R AR R AR CpG i |, B
DNA F 4L # F2 i (DNA methyltransferase, DNMT)
AL, K F R L AT DN 21 B i 1) 57 sl B2 1%
et < FEBE bR ER DR, THEERITIX
) e R EARAS S e . e 20 i S
) DN A FF 35 A 1 428 52 1o e i AT 400 22 AT P 3R
TR 4 eI 1) A2 30

WEFR I, 7E b B W 9 40 Y (upper gastroint-
estinal adenocarcinoma, UGC)H', DNA FF &AL i 1%
BRIET. R BE A~ GPXAR R IL P, Bl 1, miR-4715-
3p R CpG iz sl H B4k & B SR TE 7K1 T B
17 A ] DN A H ik 4 §% [ilg 17041 77 4 5-aza(5-aza-2’
deoxycytidine) &b B 5L ZMJR It 215 miR-4715-3p, fig
53 X RS, MG A(Aurora kinase A,
AURKA)EIL, MK GPX4/KF, 2 UGCHH
ERFET: 24, 4l , DCAFS/WDR76/LSH A 1145
152 2| DNA¥2 H 3£ 4L (DNA hydroxymethylation) ]
oM. WEFLR Y], DNARE HILLHIR T DCAF8 S
LSHAH EAER , 8900 7 LSHAEAR & 4, M) 78k
BT RA P, F4h, DNAZ H AL 7R IR 2 At -
EHm B A EEMEN. B, fERERE R,
DNA Z: F AL TET3 @ i SR AL AL R 32 R
2 B (histone deacetylase, HDAC)Z GATA6)3 3]
T X, A FH3K27Z% B, fIHIGATACZKIL ] [FII,
75 5 05 AR U % [ 40 SCD(stearoyl-CoA desaturase)s

ACSL3(acyl-CoA synthetase long chain family member
3)]0 b, AT B i S 988 4 M H BT R SR TR A 0P
2.2 RNARE/K

RNAH AL, Rl 2 NO- HBE IR 04 (NS-met-
hyladenosine, m®A), 1EA—Fh & % T mRNAF) & 5%
JEAEM, T35 mRNARIASENE . BIPERCR R .«
FH m®A L FE Il (writers)s 25 HH JEAL I (erasers) 2
m° AU R [ (readers) I [F 4%, A ®EMZIZR]
WAERT,

TEVAT R G AR FE -, SLCTATIE g g
B2 B meA BRI R . BRI, FR R RS il
METTL37EA [ 8 oot SLCTA T R 424 A A7
18 72 5 TEMiR9E (lung adenocarcinoma, LUAD)H,
METTL3:#id m A1 %3 € SLC7A11H) mRNA, {2
R, ATTHIHIERIE T, (2 2k 40 M 1G5 = 76 1T
BRI {8 (hepatoblastoma, HB)H, METTL341 511
mCA BB IR A IGF2 mRNAZE & 2 1 1(YTH No-
methyladenosine RNA binding protein F1, YTHDF1)
H5RSLCTALLHIASE 1, TR I ) BRFE T 1
M BY Mk, FENESK-FEUL4gn e, METTL3
TR ANHISLCTALLMAE BT, #h4h, YTHE %
AR AL A HE R A B A E, a0 4E 148
J{u % (hepatocellularcarcinoma, HCC)H', METTL14
5 FSLC7A11 mRNAF)S'AERHPEIX (57 untranslated
region, S'UTR) K4 m A, ifid YTHDF2/ &
IBR LA, PRIKSLCTALL IR, (E3#EHCC
AR FET: BT, HkFIET, YTHDF1/ELUAD
B METTL3 54, 158 SLCTALL m A B IRE /7,
MRS E H mRNA, I BRAET:, e 2t i e 40 o A7
E[ZS] .

Br 7 meAMEIAN, 25 F R ES FTO(fat mass and
obesity-associated) £ FR R 7L kR H 2208 T
I FRIA FTOR M I i8> SLCTA T me AR RE i,
feBEAN MG IE . T SRR, R PR L T i
EMEPY . AL, meABIE B GPX4M KL
TEN b R g, METTL3 1 3Rk T 50 GPX4(1)
m AR T T iy, FIETKFAH BLRRAS 17 72 LR
FEANE P, METTL161#1% ) GPX4 m° A2 1fife fie i3t
HARIL P, LIGE BRI, SobiiR gy ik 1 AL e 72
filf METTL1 73l i £ fh RNA B 3L &1 (B2 4 m*C.
m’C. m'GHImA) IR SRRt I HH 3, T3 o
S5 i AR BRAE TS BT . IXLERT SRR, RNA
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mA AL A R s AL i 1 — R X, B35
W fr 2 S L 0 T PR R 4% I 2%, R s IR R AR R
JENLI SR AL T8 0 T8, OB 25 M0t Kk
Seftt AR BB LA

3 AEBEIHIFE MR TR EE

EEAZYN M, 20 A (histone) A& Je 4 51 ) 1%
ORI SY, HH2A. H2B. H3. H4ZH 0/ \ R Ak,
5 DNASL[F 4 BB A A% /MR i ) . R IR 4%
SRR R EREAEN,, KT RAEFEL., ot
o 1z FBAREE 2 PP ] VR R S AR, T Bh S A
RO EMAMER RIS, S E5EMENKEE K
b,
31 HEERRENEAESRTETHRER

SH B R AR Dy Y SR B A R A AL
Bk AR AR A B 1 H3 A He N-vig (14 586 20 RS 2 R
Bk b, 2 A B A 2 (histone methyltransfer-
ases, HMTs)MIZH &5 [ 25 AL (histone demethyl-
ases, HDMs) 4%, K] H An LR )Rk, s2m
S R AL T U AR

1E B 3% W J& 41 B (clear cell renal cell carci-
noma, ccRCC)H, W78 & B, $0H 2H 2 1 H S 10 B
SUV39H1(suppressor of variegation 3-9 homolog 1)
AJ DL 2 0 2k A8 T2 AH 5C 5 1 DPP4(dipeptidyl pep-
tidase 4)/8 &7 X8k i) H3K9me3 151, S8 DPP4%%
% i, DPP45NADPH% ML 1 (NADPH oxidase 1,
NOXW)EME AW, (Rt Fud L, i e,
AT ) g A= B8, k4, SETD2(SET domain
containing 2) PR 1A 18 ik g/ W8k 25 & [ (ferro-
chelatase, FECH)J5 5T L () H3K36me3 &1 , 18 i1
NP S A A Fe® 7K, AR IEERAETS, SN ccRCCHEAE
TEAERIR YT 3 R,

1E BT 41 B2 )& (hepatocellular carcinoma, HCC)
/i, EZH2(enhancer of zeste 2)id 1A il i X & i&
AR IET: . —J7 T, EZH21E TFR2JA 5)) X 43k
VI H3K27me3 &M, T TFR2EIE ™ 55— 5T,
EZH2{¢ 1 ATOHS(atonal BHLH transcription factor
8)Ja & DNA W 34k 5 H3K27me3 A E (&1, i —
A UTER ATOHS, I AET: M, I IR AT T 27w,
EZH24M 5B & A0 T35 5 77 B A 1 [R) 70 i 9 2%
R,

EMARGIERE b, A0 P IEE#EE

G9aiti i H i H3IK9me2 121 , il JLEkILT-FE K2R
i, AR H K (glutathione, GSH)/K -, & {41y
RAEZFET ., GOatifil W) n] DA %1 — ik F2 I,
1E 8 & B IR 41 ff (esophageal squamous cell can-
cer, ESCC)H, #1452 2(stanniocalcin 2, STC2)¥iE
2H 2R A L FE I S(protein arginine methyltrans-
ferase 5, PRMTS), £ #EH4R3me2 1211, 415 ATF4.
SLCTA11MISLC3A2iE %, kLT, B 5RIB0T
RPN

AN, AE IS A0 40 i A R i 5 R IR
SCRHE 1) 18] 78 J57 58 5T 40 it (mesenchymal stem
cell, MSC)TE 2 40 23 5y I Ak At T, HLALH
P T S HE R LR 75 = ¥ - 1 (branched chain amino
acid transaminase 1, BCATI)%: A 3 2+ X 38k 1Y
H3K9me3 MK Jik/b, MMk /> GPXARIRIE, (2 it
T,

B 1 _EIRAERE € Bhe i AR AR AR A1,
R 2 R4 (lysine-specific demethylase 1/2,
LSD1/2) WA 1IE 52 9 5 1 22 S8 5 T 4% R 0 1T 1)
TEPH - He, i LSD15RIA AT #2 T+ H3K9me2 )12
7K, | ATF4 Mz system Xc 23k, Jk/> GSHIT)
H A, TR HEERFET . IAh, LSD2ilid 354 CNC
5% [ - BACHI1(BTB and CNC homology 1), fiftFk
XFSLCTATTIF, il EksET-17; /£ HER2FH
R, B2 2R BT (trastuzumab) i 25 41 g 2
Bl H3K4me3 17K Tt v A DNA H AL K R
BRI P [EVEF , 3958 SLCTA11KIARE )y, BEASERIE
T, B A 12 U 428 38 2% W] P A2 24 W U PR
3.2 (AERCEHMLIEEERRATE AR ER

A LB A & 1 OB FL 2 B (histone
acetyltransferases, HAT) 12 Z Wt AL (HDAC) &
[l %, 32 B A 48R H3 A HAR IR R L, 18
AP i 25 DR B SR (P R . FEMoRE R, AR B AT
WAB I H w4 &, T 52 M K B0 T2 AH OG5 [
() IEB0,

Wt 7R, ZHANGEECULE @ A i R S fdthr
TERACT s M 4%, I T HNF4a(hepatocyte
nuclear factor 4 alpha) fIHIC1(hypermethylated in can-
cer 1)L SR PR WA T L DR R I R Fs B 42/
M. BAME, HEO OB KAT2B(K/lysine
acetyltransferase 2B)i# i HiX P # w5456, TR
XPER AT AE I AL DA R4, AT 5 M 40 JH 0 Bk A0 1
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PEUEME. LA, RBIMIEFMERAEAS S
¥)(RBI inducible coiled-coil 1, RBICC1)5ZEfH 2,
Ik 4% # lilf 2 A4 3(elongator acetyltransferase com-
plex subunit 3, ELP3)f EAEH, Al#&F+ H4K12ac
K-, Wk CHCHD3(coiled-coil-helix-coiled-coil-
helix domain containing 3)&Ek LT L 2L A, 1
SRARLAR ROST AR, 5 FEIET- B, bk, FRHJE
I T A I AR AA I (3-hydroxy-3-methylglutaryl-
CoA lyase, HMGCL)i# i fi¢ it DPP4[#) H3K9aclZ
M, SN A R, T4 R A ) Bk BT TR
TR, A, HDACH il 77 W 8 3 4 il system
Xc M GPX4RiEL, PSP ILT- P, HAGER
B2, SR 250 i HD A CHI I 7775 #h 28 R 48 5
L5 Pt yeg 2 M b B4 D AT REAEAE 22 S, L BARAL
W 75 12— B A,
3.3 AERAZFRNWEMBRIECHHIBRIER

YR 2 F AR — FhOCHR R B S5 121, @
Iz F R R 2R G0 T R o R AR R s R (1)
SEIEBN T, fEME S, A B RS R
AR 32 0K 2 e 74 114) 5k DRI IR0 4D ) e e 9 ik R ) 2%
ik, NI SEIR R AL T R

BRCAIMXE H 1(BRCALI associated deu-
biquitinase 1, BAP)/E N2z R AGEE, ftd iyl
H2AZ E AL (H2Aub){E SLC7A1L S 5T X I F 7,
I SLCTALTRERIE , fedtBRauTs, dhify ] fih e
AP KA, H2BYZ Ak (H2Bub) 7K F 1) [ IK
WA SLCTALIRIE, fRBEBRIET- 1 p53iH
52 2R 1 IR 7 (ubiquitin specific peptidase
7, USP7)B&AK H2BubfE SLC7ALIRTE X (I FE, M
T LA AR s (O i) 77 s il SLCTA TR A 9, 7
i A, USP22(ubiquitin specific peptidase 22)ifidt
F#{KAE TFRC(transferrin receptor)/d 2/ ¥-[X ('] H2B-
K120ubfE 1) & K, Ml Est e, AR bAEE
(sorafenib)iiyf Z5H& LI AEN LG Y. thAh, HEHEZ
K MYSM1(Myb like, SWIRM and MPN domains
DSR2 3 ERIE T S8 8 1 GPX4. SLCTALL
A FTHI(ferritin heavy chain 1)7K>F- 1%, 34 i
I8 21 R () RSB T U, ZMYNDS8(zine finger
MYND-type containing 8)i#id £ & NRF2(nuclear
factor erythroid 2-related factor 2)3&iA, W34 5 Fi 4
A RE A LR T A B B R T, AT R 3
TR R AL,

4 JELRFERNATEFHIE ZH RS SE T AU AR
ER

JE4m TS RNA(non-coding RNA, ncRNA)Z$5#E
s e FAEA GRS B R RNA ST o UTAE R 5T
R, F5E B FIncRNA, ELFEH/NRNA(microRNA,
miRNA). K5E9E4S RNA(long non-coding RNA,
IncRNA)FIFR 4R RNA (circular RNA, circRNA), it
WP ERAE T AR, R AR K AR i 194, PR N4
NI LE P ML T g 6 RS R B ) va T B
HHERERTFENL.
4.1 MicroRNAZESRFE A= RY/ER

T/PRNA(mMIRNA) R — A 292244 T IR 1) H
RS RNA, 3= B8 5 M 45 & #E 2L A mRNA
(3 LB PE X (3'UTR), 145 H 3R IE: 58 4 HAMIRHE
fEEmRNARFAR, 1A 56 4% T ANUH0 5B

WFFE R, miRNATE S 2 Fl& 2 20T
FERARI 7 TH , miR-302a-3pF1 miR-33 5450 [A] 2k ia
HAMBED, N FeIRIE, M fE gt 2k
HET 105690 M2, miR-137F1 miR-7-5pil i ] 45 &
MR F5i8 T SLC1AS S Ze R Bk B Ak, T BRI
SHM N [ Fe* 7K, I ERAET: 78 RIS
i, 2> miRNAs# 1] GPX4(£1miR-182-5p. miR-324-3p
F1miR-15a-5p) J SLCTA11 (U1 miR-378a-3p. miR-375.
miR-5096. miR-125b-5p. miR-12611miR-520d-5p), &
FEREAE T, AT AE T 7, 75 R T S Ak 1
FErf, miR-424-5p A miR-670-3p 7 il i 4 [f] ACSL4
AL T U7, AN ) miR-18af1 miR-52238 8 4
ALOXE3(arachidonate epidermal lipoxygenase 3)#ll
ALOX15(arachidonate 15-lipoxygenase), Z 585011
AT, LEFTE Y, miR-339-5p i & iA i fE ik
£ [ # 4% 1 (ferritin heavy chain 1, FTH1)H H Wi BEAE,
HHIERAE T B, A4 H2, OF FH miRNAZH
KGR A BRFE T TR AR N TR I (1 R 451 B2, 3R B I 4%
miRNAZKF- R G2 ) e 184 5 (1) A 5
4.2 LncRNATEERZETRIE R RIIER

KB JEZW D RNA(IncRNA)ZE — 2K KT 200
MZF R AEGR IS RNA, BT 58 A, mRNAs.
RN L4, BE N miRNARHESR, RIFER I
R TERFETH , IncRNA 3 Bl it 5% 44
WIHRNA (competing endogenous RNA, ceRNA)#/L il
HmiRNAM EAEH, IS0t F288,

HAKIM S, IncRNAZERRSE T4 b Z Mgtk
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FEVER, BN 540 H0 N Fe*'. SCL7A11. GPX4[)
RIEKFo TEBACH T, LncRNA NEAT Lifi i 45
& miR-9-5p_b il %2k 55 (1 5244 (transferrin receptor,
TFR)A1 GOT1(glutamate oxaloacetate transaminase
DRI, S hnFe” AR R, (22T MiPR11-
89 U3 i miR-129-5p Al prom23l %, M|k IET- K
A, FERE BT J7 T, IncRNARE K % 5%
YER . B, LncPVT Ll 454 miR-214-3p, $0H] 3L
5 GPX4 3'UTRIIZE G, MM s 240 i o 1 2k ot
T8, X SLCTALI AL fEd, FES 5%
£33 LncRNA OIP5-AS1/miR-128-3p. SLCI16A1-
AS1/miR-143-3p, 1 H T 5151 i A B w55 2 Fh
JRE ST 30870, e Ah | LINCO0061 838 i (£ (I LSHE iA
K, b SLCTALLA ) FiE e, BERARA M2k P T
RAEBARE S, HEREZ, BN IneRNAR DL 2
MRIET B BN, i H LncRNA LINC00336
AT 45 4 ELAVEE RNAZE A 8 H 1(ELAV like
RNA-binding protein 1, ELAVLI1), /b 40l N
Fe? ¥ B Al g 5T ROS 177 4 91 3B W] /E N ceRN A
S GSHA A, MMpHIZIET-. 514k, LncRNA
MT1DPif i miR-365a-3p/NRF 2 %, 1 55 41 i X}
BRBET R . BERHLRI S-S N, s SR
FET 5 5 254 (Werastin) AL ) 2R3 3%, SRR /N i
JifiJ& (non-small cell lung cancer, NCSLC )% i 8 (1)
YT SR A TR R
4.3 IFIRRNA(circRNA)E AT T8 AV 1E

CircRNAZ — K B2 RNAZ i [ ) BT
TR IR AE G 5 RN A, HAT LB MR Rk . 1
N JEME TS 4 RNA(ceRNA) AT 3E i miRN A
4% ”(miRNA sponge) MLl 45 &7 & miRNA, ffFxH
Xof B B DR ) H RV L DT A iR K B T b R 4
YEF Y, 251 F miRNA, circRNA A 3@ it i 5
SLCTA11H1 GPX4% CHE R T 2 2T WK
B, circ-00970095 circFNDC3BH] PL4E A miR-1261
A miR-520d-5p, ffkEx SLCTATTHHA], {23 H
Ik, PHIERIET Y, AL, circ00679343@ i miR-
545-3p/SLCT7ATLIE & 4 i FF R g 48 L 1Y) 2% SE
T-%, CircKIF4A. hsacirc0048179F1 circIL4R{E N
miR-1231. miR-188-3p. miR-541-3pfIiF4s, I
HEGPX4 1) ARH,

AT E R, H5 circRNA T [7] i 45 & £ Fil
miRNA, TR 2% B /2% . ] cire-EPSTIiE

it 454 miR-375. miR-409-3pf1 miR-515-5p, i
SLCTALLIIZRIE , FIH S 2 40 f gk at - P
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Epigenetic modifications precisely regulate the expression levels of ferroptosis-related key genes such as GPX4 and ACSL4 and associated enzyme

activities through multiple regulatory mechanisms, including dynamic regulation of DNA/RNA methylation, histone modifications, and non-coding

RNA networks, thereby influencing the lipid peroxidation progression in tumor cells. This epigenetic-ferroptosis cross-regulation not only reveals novel

mechanisms underlying tumorigenesis and development, but also provides innovative intervention strategies for developing dual-targeted therapies (e.g.

epigenetic drugs combined with ferroptosis inducers).
1 RIIEAE PRI THLHI (K E B Figdraw#2Fl)

Fig.1 Epigenetic regulation of ferroptosis mechanisms (by Figdraw)
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