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Abstract

sponses in cardiomyocytes, while the underlying molecular mechanisms remain incompletely understood. This

MI (myocardial infarction) is characterized by enhanced oxidative stress and inflammatory re-

study aimed to investigate the dynamic changes of protein disulfide-bond modifications after MI based on disulfide-
bond proteomics and to explore the functional reprogramming of the transcription factor NR4A2. A rat MI model
was established by left anterior descending coronary artery ligation, and myocardial tissues were collected at 3 and
5 days post-surgery. HE (hematoxylin-eosin) staining was performed to evaluate myocardial injury. DSBPs (dif-
ferentially modified disulfide-bond proteins) were identified by disulfide-bond proteomics followed by GO, KEGG,
and PPI analyses. NR4A2 disulfide modification was examined by immunoprecipitation and non-reducing/reduc-
ing SDS-PAGE. In vitro, an OGD (oxygen-glucose deprivation) model was constructed, and CCK8 assay was used
to determine the safe concentration of 4-PBA. ER stress-related proteins and NR4A2 disulfide configuration were
analyzed, along with the mRNA and protein expression of inflammatory markers IL-10, NF-kBIA, CXCL10, IL-1p,
and IL-6. HE staining showed that myocardial structure was markedly damaged after MI, with scattered inflamma-
tory infiltration at day 3 and extensive necrosis and inflammatory cell aggregation at day 5. Disulfide-bond pro-
teomics revealed significant alterations in the myocardial disulfide modification profile after MI. NR4A2 exhibited
increased disulfide modification and expression at day 3, forming complexes with RXR and PPAR, while both the
modification level and interaction weakened at day 5. SDS-PAGE confirmed the reversibility of NR4A2 disulfide
modification. In the OGD model, NR4A2 disulfide bonding was impaired and accompanied by enhanced ER stress.
Treatment with 4-PBA effectively alleviated ER stress, restored NR4A2 disulfide configuration, and reduced ROS
levels. Inflammatory analysis showed that OGD downregulated 1L-10 and NF-«BIA while upregulating CXCL10,
IL-1B, and IL-6, which were partially reversed by 4-PBA intervention. This study reveals that NR4A2 undergoes
disulfide bond-dependent structural and functional reprogramming during the early stage of MI, in which ER stress
plays a key regulatory role. The dynamic changes in NR4A2 disulfide modification may affect myocardial injury
through inflammatory transcriptional networks, providing a potential therapeutic target for post-MI treatment.
Keywords myocardial infarction; NR4A2; disulfide proteomics; endoplasmic reticulum stress; inflamma-

tory reprogramming
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%1 RT-qPCR3|¥1F7%!
Table 1 Sequences of primers for RT-qPCR

SIFPEI(5—3")

mRNA Primer sequences (5'—3")

IL-10 Forward: TGC CTT CAG TCAAGT GAAGACT
Reverse: GCT CCA CTG CCT TGC TCT T

NF-kBIA Forward: ATG TTT CCT GGC AGC ACT TGG
Reverse: TCT GTG AAC TCC GTG CTG TTG

CXCL10 Forward: GCT CTA CTG AGG TGC TAT GAG G

Reverse: TCT TGA TGG CCT TCG ATT CTG G
IL-18 Forward: GAA ATG CCA CCT TTT GAC AGT G
Reverse: TGG ATG CTC TCA TCA GGA CAG

GAPDH

Forward: TCT CTG CTC CTC CCT GTT CT

Reverse: TAC GGC CAAATC CGT TCA CA
IL-6 Forward: TCC AGT TGC CTT CTT GGG AC
Reverse: GTG TAA TTA AGC CTC CGA CTT GT

12,6 Zé@kmpd  BUOLNAZsAAEA, &
RIPAZLRIR LRI S 2K, 4 °CF, 12 500 r/min.
15 min O EL i, BCAVE R . SR EAN LA
2P, 95 °CIN# 10 min 8 % 5 11T SDS-PAGE FE Ik
I8, R ZPVDEIR. JELLS%I AR Wk B BSA
IRE T h, 25 —$t(1:8 000)F 4 °CHFF it % .
Ve JE TN HRPARIE —$T (1:10 000), ZEFFE 1 he
28 TBSTYE S5 i FH ECLAL 22 R G IRF E 5 I A% -
PLGAPDHYE NN S, fi A Imagel #0145 25 iy b AT 7K
FEAE 3 HT, ALCEAS [ 20 R) 2R 1 3R K P I 22 57
1.2.7 #mfR3Edc. OGDREA 542 HOC24H il
T 10% 5 245 13 1 1% /45 % & 1 DMEM & b
Rigrdkrp, OB E T 37 °C. 5% COfHIE R 3746
WH IR IR . 4HBRIRES R 4F FF1X 70%~80% il & I
FEAREH T 5256 . 3 7R /BB (oxygen-glucose
deprivation, OGD)E U | FF W IRE IR, SO
P DMEM, J-44 41 B T 6 E 55 7748 (1% O 5%
COxv 94% No)H i & 1 I [A], DARSEHLER ifi Sk A 24
B XHIGAHAM M gE R T W R PR IR . AR
ERMISAENRAA2 i S 5 I /EFH, TO0GD
SRS G ST ET 1 WA N P 5 R S ) R 4- 2R TR
(4-phenylbutyric acid, 4-PBA)#E4T T 7. 4-PBAR—
P T2 EEE 71, Res (it B 0 IR &,
I8/0 PN 5 Y P9 R ST B B T SRR, AT 2R ER Y
WU, SIS SE RS WA, TS Sk R R
TS

128 CCK8  HFHIC24MM4%5x10°/FLEFT T 96 FLAR

P IEE fE R H2E T A AR . KEBREE WS, FRFL
BIA10 pL CCK8IRA, 737 °CiiF & 1~2 ho I BEFR{X
TE450 ndf K M58 PR FEARL, THE AR 1384k
12,9 ROSAX  HHHHIC24NIZPBSTEK)G
I DCFH-DA LAE{K, 37 °C## & 30 min, 32 HIR 2]
PUARIE Rl 78 40 NG0B . 0% 8 45 55 I PBSHRI
3K, BIF T 1 mL PBSHT . i A 3 4 M (SR W 26 e
SR, DL A0 FEEROS /K-

1.2.10 282 ZPCRA&M  HUHOC24N U FEA, fif
F TRIzoX 72 B RNA, K64l J ik FE i , %
R Ul I L S A A cDNA . LA cDNAREKR , %
F SYBR GreeniZ:/E S 58t € & PCRAX EifiAT#H™
W, RAR RAFEBN . 514 SYBR Premix Ex Taq/Z
TALIREE K (GIF AR ). B3G5 —Mh: 95 °C
TAR 30 s; Bl J5 1EAT 40 MG 9386 [ 8L, BEAMIEER
F1F595 °CAR S s, 60 °CIE K30 s, 72 °CHEfH 1 min, #
SLIE R LV IE Y S KR . L GAPDHAE R
W2, K2 %5

1.2.11 %t F o 181 F SPSS 22.0 2 Graph-
Pad Prism 73 AT S0 H000 Go it , a3 R A3
bR e 22 (eks)RKon . 2R LU R &R 7 25
HT (one-factor analysis of variance, ANOVA), P<0.05
N B G

2 R
21 Z=4HEHESRBRLER
ControlZH.C AIL4H fu L &S I L O LEF 4R HE 51
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X AANATHE TR A HEAT T PPI % M 2 I Th RE & 454>
Mo PPIMZS IR, B A 2 7R S5 A BEAEH
T2 A B GBS (B 3A) . oA, NR4A2
LT ML ST AL B, 5 RXR. PPAR. LXR%E
2 P RZ SR I S REAR G5 TAPAEIEEBR &R . GO

S

172

Control

SROHTRAR SR 4L kAR IR S

ReE R ITE R, ZREAEEEE T4
ER R ANA NN i E A AN S DA LN (S
TR R o sp A S AR ) O AR 5 TEAN A 27K |
ZREARESET N REE X SRk g,
NADPHAN I F A W5 E540; 1557 T IhRe i1, % 5%
HE ML T E G F RS A BH R A
BRI FRB R A4 A RE AR B 45 425 (B 3B
ME3C). KEGGHE M it — P or, 2 7 i
EHEFHEET L4 5MUEE SV LS 5B,
45 PPARME 58 M. TNF{E 5% . NF-xBfg 58
. PI3K-Akt(5 5l B FIMAPKAS 5B, RN A
PR EE N, AW, BRAET S 2 (B 3CHI
3D). %iE, PPIMZ% GO, KEGG & #E45 BHL7R, MI
SR Rl AL st ks 2 g S e s SR i B
B AN RIEE 5 AL TR AR B VAR OK
2.4 NR4A2ZFIHBESMNEMNTEL
EE— 0t AT st i A
SFAR T o R €5 AR X 1% 45 4 pLink
A BT AT, X NRAA2ER (1 38 S 85 8 1 i
BT T RS E BT s SRS TR
A (XIC area) it H BB IEE . SR ER, £
XTHRZH A, NRAA2AN A I 2] /> F A e 776 1 P4 Y 14
s, BECNSAS. E3RYIHF, NRAA2NER hR
BRCE D ERIN, B IRA R ST R E 134, B
HrHE 2 AL, PR MU IR BOIRZES FNRAA2 K
AT IR R EY . S DRI S 3R
HR AR R SAS s A7 5 AT XIC areadr AT K I, 60—
364, 72—329. 79—359. 90—389. 29—329 _f
(R %o U YRR AE 3R 40 P I 3 T 1 (P<0.05), $7RAS
A BB A G I, i B AR R 2 4 i K%
FEIA R E N (32 2). SRR, NR4A2 5 HiAth i
2 R ) e E AR B B o, BR4k 45 NRAAT IR

Day 5

Black arrows indicate inflammatory cell infiltration; red arrows indicate myocardial necrosis.
Bl =ZHXROAELAHERE
Fig.1 HE staining of myocardial tissues in the three groups of rats
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A: volcano plot of differentially expressed proteins between the control and Day 3 groups; B: volcano plot of differentially expressed proteins between

the Day 3 and Day 5 groups; C: volcano plot of differentially modified disulfide-bond sites between the control and Day 3 groups; D: volcano plot of

differentially modified disulfide-bond sites between the Day 3 and Day 5 groups; E: heatmap of the top 50 differentially modified proteins among the

three groups; F: venn diagram of differentially modified proteins among the six comparisons.
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Fig.2 Bioinformatic analysis of myocardial tissue proteomics and disulfide-bond proteomics among the three groups of rats
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A: PPI network of intersecting proteins; B,C: bar chart and bubble plot of GO enrichment analysis for intersecting proteins; D,E: bar chart and bubble

plot of KEGG enrichment analysis for intersecting proteins.
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Fig.3 Enrichment analysis of differentially modified proteins among the six groups
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Table 2 Positions and areas of internal disulfide bonds in NR4A2 protein among the three groups

TR Xof HEZH (XTC U TR AR 3RAXICUEIFR) SRAXICUE IR
S-S site Control (XIC area) Day 3 (XIC area) Day 5 (XIC area)
3-77 3.99x10°+0.55%10° 6.28x10°+0.45%10%* 1.62x10*1.12x10°
3-190 2.83x10°+0.51x10° 5.73%10°£0.65%10%* —
77465 3.22x10°+0.36x10° 4.21x10°40.62x10%* 4.79%10°40.35%10°
190-475 1.11x10%+0.25%10° 2.76x10°+0.56x10°* —
190-534 1.26x107+3.28%10° 3.29x107+5.51x10%* —
77-534 — 4.34x10°+0.34x10° —
77-566 — 1.79x107+1.27x10° —
190-505 — 1.39x107+1.19%x10° —
465-3 — 1.23x107+5.48%10° —
465-475 — 5.38x10°+0.84x10° —
465-505 — 5.40x107+1.26x10° —
475-505 — 1.26x107£2.27%10° —
505-566 — 6.70x10°£0.54x10° —
190-77 — — 1.16x107+1.58%10°
475-534 — — 4.89x10°+0.27x10°
505-534 — — 1.02x10°+0.15%10°
*P<0.05, HXFIRA . — RNiEH.
*P<0.05 compared with control group. —: unavailable.
®3 ZLHEINRAA2ER-ERZE MBI ERER
Table 3 Positions and areas of disulfide bonds between NR4A2 protein-protein among the three groups
IrE BT FENH T2 itk i VA XIC VTR 2
Group Protein ID-1 Protein ID-2 S—S site XIC area summed
Control NR4A2 NR4Al 465-135 54 000 000+1 753 823.75
NR4A2 RXRy 77-226 12 600 000+3 218 562.64
NR4A2 PPAR« 77-384 67 000 00+37 281.37
Day 3 NR4A2 NR4ALl 475-79 123 000 000+16 582 548.42
NR4A2 PPARy 190-313 1 560 000+195 735.81
NR4A2 LXRpB 77-311 33 700 000+2 957 382.57
Day 5 NR4A2 — — —
—: A& .
—: unavailable.
SRR B AT R NRAA2TE MIF- E A KT MO AR 1, {ELBE
2.5 NR4A2EHFRIZKFHTER J& TR W D o
KA A (AR AR, I MUGARFER 2.6 NR4A2EA ZFHBAY AT MEIRE
(] (LA NRAA2 EE FH /K PEAT 1 WB(Western NEGAUENRAA2EE H BB p ay i, SR H
blo) i MI(El4A). 4558 BN, fEXT R4 FINRAA2FK A G % FLPTIE (immunoprecipitation, 1P)45 4 NR/R SDS-
Ab TR K FE3 R, NRAA2/KFAEI R A ik PAGEGI H 4> 7T (BESA). 45 BB R, fEXT IR 2L AR,

Bl EE, BOM RS E TR (P<0.01); Ti7E S R4
W, NRAA2FK IR K3 3R B 2 F F% (P<0.01), JF
K FXFHEL (P<0.05)(K4B). WBZ: H. % ] NR4A2
HAEAKCEEMIF 2T &G T RIS
A, 5 TR A AL I S A, B

NR4AA2 T ZL DL AR TE SAFALE, =01 457 o s L
59, Hd R AP AT f5 TC 0% 2 7+ (BEI5B). fE3 R,

NRAA2TEAEIR R 264 T B BA &2 (1) 7=
ST IHARE B TR SRR RS, &

14k, Hm
ok

TRGRE R E RIS, ARG, %H)%ZMEEENMMT?
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(A) (B)

Control Day 3 Day 5 1.5

w w1 -

NR4A2 ( 66 kDa

- -

GAPDH

NR4A2/GAPDH
fold change

T T T
> ™
N

00“\ Nk o
A ZHLAINRAA2E 264 ; B: ALIAINRAA2EE H AR EAEFDIRIE . =3, *P<0.05, ***P<0.001, ****P<0.000 1.
A: representative Western blot bands of NR4A2 protein in the three groups; B: quantitative bar graph of NR4A2 protein gray intensity. n=3, *P<0.05,
*kP<(0.001, ***4P<0.000 1.
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Fig.4 Differential expression of NR4A2 protein among the three groups
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A: fEIEJF(R, +DTT/TCEP) 5 4FiL JA(NR, —DTT/TCEP)Z& A N X NRAA2 G & IIUE ) Wit 1T SDS-PAGE /37 ; B~D: XA, Lol E3 R4 K5 R AL
FEIE SRS AR IR A F FNRAA2 7 1/ AR B E B HAL . n=3; **P<0.01; ns: P>0.05.
A: SDS-PAGE analysis of NR4A2 immunoprecipitates under reducing (R, +DTT/TCEP) and non-reducing (NR, ~DTT/TCEP) conditions; B-D: quanti-
tative comparison of high-molecular-weight to monomer ratios of NR4A2 under reducing and non-reducing conditions in the control, Day 3, and Day 5
groups, respectively. n=3; **P<0.01; ns: P>0.05.
E5 =tHEINR4A2ZEZ A —MERSHE K
Fig.5 Changes in NR4A2 protein disulfide bond status among the three groups
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FL1-A:: FL1-A
A: AN[FR BE4-PBAXTHOC2AH AB V& 71 15 M; B: AN AR FE4-PBAXTOGD S BY 4 i ¥ 3 (¥ 520005 C: b HAL. A2 21 2 4-PBAZLGRP78FICHOP
B H 4R IL ) Western blot4fi %; D E: GRP78-5CHOP& A K FEAH Sttt 73 #1; F: = ZH7EJEIE JR(NR, ~-DTT/TCEP) % ff FNR4A2[#SDS-PAGE %%
iy G NRAA2 7 T/ AR (e T LU G Hy T = 24 i ROSK T (9 A I 485 2R I HLsE |0 o m=3; #P<0.05, **P<0.01, ***P<0.001,
#k*%P<0.000 1; ns: P>0.05.
A: effects of different concentrations of 4-PBA on the viability of normal H9C2 cells; B: effects of different concentrations of 4-PBA on the viability of
OGD-treated H9C2 cells; C: Western blot results showing GRP78 and CHOP protein expression in the control, model, and 4-PBA groups; D,E: quan-
titative analysis of GRP78 and CHOP protein levels; F: SDS-PAGE bands of NR4A2 under non-reducing (NR, ~DTT/TCEP) conditions in the three
groups; G: quantification of the NR4A2 high-molecular/monomer ratio; H,I: flow cytometry results and quantitative analysis of intracellular ROS levels
among the three groups. n=3; *P<0.05, **P<0.01, ***P<0.001, ****P<0.000 1; ns: P>0.05.
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Fig.6 Effects of 4-PBA on cell viability, NR4A2 disulfide bond modification, and ER stress levels in HIC2 cells
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Fig.7 Expression of inflammation-related factors among the three groups
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