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High-Altitude Hypoxia Stress Leads to Down-Regulation of Ribosomal Protein
Expression in Mouse Muscle Tissue

DAN Yi', DONG Xingiang'?, LI Hongchang'*, ZHANG Linggiang'*
("Academy of Military Medical Sciences, Beijing 100850, China; *College of Life Sciences, Hebei University, Baoding 071002, China)

Abstract Human physical performance declines in the low-oxygen environment at high-altitude regions.
Muscle mass is highly correlated with athletic performance, so it is necessary to explore the effects of high-altitude
environment on muscle and their underlying mechanisms. This study constructed a hypoxic mouse model by simulat-
ing an altitude of 5 000 m and raising them for three consecutive days. The characterization protein expression of the
skeletal muscle in high-altitude environments were analyzed by using DIA label-free quantitative proteomics technol-
ogy. Differential proteins were screened by bioinformatics and enrichment analysis was conducted. A total of 2 717
proteins were identified by the proteome analysis. Taking P<0.05 and |log,(fold change)|=1 as the standards, there
were a total of 339 differential proteins, among which 193 proteins were significantly up-regulated and 146 proteins
were significantly down-regulated. GO analysis indicated that differentially expressed proteins were primarily in-
volved in biological processes such as ribosomal structural assembly and electron transfer activity. KEGG analysis
revealed abnormalities in signaling pathways such as amyotrophic lateral sclerosis and ribosome translation. Analy-
sis of downregulated differentially expressed proteins revealed that this group of proteins was significantly enriched

in ribosome. Western blot assay confirmed the downregulation of ribosomal protein expression. This study charac-
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terized the protein expression of muscle tissue in high-altitude hypoxia condition, further revealing that ribosomal

biosynthesis and energy conversion may be key pathways influencing muscle tissue function in high-altitude envi-

ronments. It provides a new theoretical foundation for improving physiological adaptation and enhancing athletic

training to high-altitude condition.
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T bl S Z: 58 R IR 8 BT R
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0022626 Cytosolic ribosome RPLPO, FAU, RPS2, RPL26, RPS14, RPS16, RPL27A, RPL7A, RPL11, RPL14, RPL4,
RPL24, RPS9, GCNI1, RPL13

0005840 Ribosome RPLPO, FAU, RPS2, RPL26, RPS14, RPS16, PSMAG6, RPL27A, RPL7A, RPL11, RPL14,
RPL4, RPL24, RPS9, GCN1, RPL13
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0002181 Cytoplasmic translation RPLPO, Eif4al, FAU, RPS2, RPL26, RPS14, RPS16, RPL27A, RPL7A, RPL11, RPL14,
RPL4, RPL24, RPS9, RPL13

0140236 Translation at presynapse RPL26, RPS14, RPS16, RPL27A, RPL7A, RPL14, RPL4, RPL24, RPL13

0140241 Translation at synapse RPL26, RPS14, RPS16, RPL27A, RPL7A, RPL14, RPL4, RPL24, RPL13

0003735 Structural constituent of ribosome ~ RPLPO, FAU, RPS2, RPL26, RPS14, RPS16, RPL27A, RPL7A, RPL11, RPL14, RPL4,
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0003954 NADH dehydrogenase activity ND1, NDUFA9, NDUFS2

mmu03010 Ribosome RPLPO, FAU, RPS2, RPL26, RPS14, RPS16, RPL27A, RPL7A, RPL11, RPL14, RPL4,
RPL24, RPS9, RPL13

mmu05171 Coronavirus disease-COVID-19 RPLPO, FAU, RPS2, RPL26, RPS14, RPS16, RPL27A, RPL7A, RPL11, RPL14, RPL4,
RPL24, RPS9, RPL13

mmu05014  Amyotrophic lateral sclerosis ACTGI, EIF2S1, ND1, ND2, PFN2, PAMA3, RAB1A, PSMA6, ACTR1A, SDHC, NDUFA9,

NDUFA6, NDUFS2
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