DOI: 10.11844/cjcb.2026.02.0005
rh E 40 M 2B Y022 24 Chinese Journal of Cell Biology 2026, 48(2): 294-314 CSTR: 32200.14.¢jcb.2026.02.0005

CAPN3$E[EI60 A B ER VB T A 7 e EL
BEL BRI HIERFR

THE" THY HRE gexr”
(VLK 25 AR 2B, UM 310058; VT K50 IR %5, KU 310058)

WE  CAPN3Z4E B TIRH 6 F LA E @ Becalpain K ARG AR . EFD & PR AT A
IL, Capn3b(CAPN3 ) /B & &) ) 7T #A% 1= % @ Def48 3 ZAZA=VvAZLA# p53. ChklA=Weel 5845 2m it 7]
269 & G i, St m AL B A2B 4, 32-FDEF-CAPN3/Def-Capn3b% &) L& 42 2 40 e, J&) 409
PP KRR FZAER . 122, CAPNIR T Y& it 4a 0 B) B 45 ) F 20 R AF e, 32 B8 504 B AR 1
Bk 9230 A 445 T ACAPN3(hCAPN3)RT294N A4 it JB] 21 & A= 13/ 2m 6L 8] 040 % B F 04 2 g 1%
M, mA&SZ HCCAR2. CCNL1. RBLI. RBL2 44%& & £hCAPN3#I# &M . 4, 254 A
CRISPR-CasO4& R4+ AN & @ 69 % L A - AR T 32 0 & R RA R 69 R T4k, @A A I
R ARAR AR A F AR AT AT RAS R R ASAT R I, rblI R EAR E 3 5L 6 FFIEL F, rbl2
AABRL T BT HERF OB R. RRDIIREARTETH, fERNA-seqd 3BT LI, A&
@ T e R E AR KRB AL R E L, M B R e IR B AR KA B R R 3 TR, L
rbll R ZARRTAE S 66 & & F L. Z AR R348 & T *F DEF-CAPN3/Def-Capn3b 5_&-4 12 20 it JB] A
P4z 64 3 RE B AR AL 69 IAR.

XH#1a  CAPN3; DEF; Rbll; 408 U1 25 A B HE K&

Identification of Cell Cycle Regulators Targeted by CAPN3 and Their Role
in the Development and Function of Digestive Organs
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Abstract CAPN3 is a member of the calcium-dependent cysteine protease family, calpains. Studies in
zebrafish have revealed that Capn3b (a homolog of CAPN3) can be recruited by the nucleolar protein Def to the nu-
cleolus, where it cleaves cell cycle regulatory proteins such as p53, Chkl, and Weel, thereby regulating liver devel-
opment and regeneration. This suggests that the DEF-CAPN3/Def-Capn3b proteolytic pathway plays a critical role
in cell cycle regulation. However, whether CAPN3 targets other cell cycle regulators remains unknown. This study
employed an in vitro enzymatic activity assay system to examine the cleavage of 29 human cyclins and 13 cell
cycle-related factors by hCAPN3 (human CAPN3). This study identified four proteins—CCAR2, CCNL1, RBLI,
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and RBL2—as novel substrates of hCAPN3. Subsequently, this study used CRISPR-Cas9 technology to generate

zebrafish mutants for the homologous genes encoding these four proteins. /n situ hybridization analysis with liver-,

pancreas-, and intestine-specific probes revealed that knockout of b// significantly delayed liver development in

zebrafish, while knockout of 7b/2 showed a potential impact on intestinal development. Although the rb// mutants

were viable and fertile, RNA-seq data analysis indicated significant upregulation of genes related to hepatocyte

metabolic activity and significant downregulation of genes associated with circadian rhythm and immune response

in adult fish, suggesting disrupted liver function in the b// mutants. These findings enhance the understanding of

the functional roles and mechanisms of the DEF-CAPN3/Def-Capn3b complex in cell cycle regulation.
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Table 1 Selected 13 cell cycle regulators based on studies of zebrafish capn3b*”*'* mutants

EHEN B ISYDAEE A B E

Protein_ID Total hits Start position—end position

ATM 10 510—520, 889—=899, 922—932, 1554—1563, 2075—2085, 2146—2156, 2310—2320, 2658—2668,
2914—2924,3012—3021

ATR 1 44—54, 173—183, 193—203, 275—284, 399—409, 481—491, 549—558, 804—S814, 827—8306,
1613—1622, 1851—1861

CCAR2 4 320—330, 428—437, 694—704, 828—837

CDC42 0 —

CHK2 1 461—470

E2F1 1 19—29

MYTI1 3 372—382, 1027—1036, 1070—1080

PLK1 1 545—554

RADI17 1 104—114

RADI 0 —

RBI 5 75—85, 100—109, 199—209, 305—315, 541—551

RBL1 1 550—559

RBL2 1 581—590
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indicates that the total number of sites is zero; therefore, the “start position—end position” field is null.
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A~ 43 590536 B HCCNBL. CCNB3. CCNH. CCNO. CCNQ. CCNY. CHEK2. PLK1. RADIHIE i G BN 4 5, &/ NETHRBbR T T
A E AR S RIT 53 78 B I CAPNI R /R BEAT B SEUG N, M5 128 5 (VR A AR LB R O B AR R C APN3; C129S 37 BEAT B SR N,
i i 2 VR A 12 A FUBE V(K R AR CAPN3 S . Time(min) 7R BEAT BEE S80I (14 52 NS, 0FR s AR EAT BRGS0 s BB -5 44
I, 2072 7R B 5 7 B B 114 220 mine £ /N B U B0 07 7R 1% A B 9 415, 547 AkDa, A2 MIf¥IFlag Ms. CAPN3 Rb. Tubulin Ms
JFUR, MsZEoRiZ iR T /N B (mouse), RbIZE 7 Hisk Ui T 4 - (rabbit). Flag MsF T4 4H7 47 Flaghn 25 [RME 2 5 11; CAPN3 Rb#&IICAPN3
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A-I: Western blot results of candidate proteins CCNB1, CCNB3, CCNH, CCNO, CCNQ, CCNY, CHEK2, PLK1, and RADI, respectively. The pre-
dicted molecular weight of each protein is indicated at the top of each subfigure. In the figure, “CAPN3” indicates that the candidate protein was mixed
with the enzymatically active wild-type CAPN3 during the enzyme activity assay; “C129S” indicates that the candidate protein was mixed with the
enzymatically inactive mutant CAPN3“'*® during the enzyme activity assay. “Time (min)” represents the total reaction duration of the enzyme activity
assay: “0” indicates that the sample was directly used for subsequent detection without undergoing the enzyme activity assay, while “20” indicates that
the enzymatic reaction lasted for 20 min. The numbers on the right side of each subfigure indicate the molecular weights at the corresponding positions,
with units of kDa. The labels “Flag Ms”, “CAPN3 Rb” and “Tubulin Ms” on the left side denote antibodies: “Ms” indicates that the antibody is derived
from mouse, and “Rb” indicates that it is derived from rabbit. The Flag Ms antibody is used to detect the Flag-tagged candidate proteins, CAPN3 Rb is
used to detect CAPN3 and CAPN3“'*, and Tubulin Ms is used to detect Tubulin protein. Tubulin serves as the loading control of the samples.

Bl SFRIERINMETER LT A CAPNIES IR IR E AR E A R ZENTLE R-1

Fig.1 Western blot results of candidate proteins with successful overexpression but no or minimal cleavage by CAPN3 enzyme-1
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CAPN3 C1298 —
e _CAPN3 _ CI29S CAPN3 _C1295
ime/min 0 200 20 Time/min 0 20 0 20
40 kDa 55 kDa Time/min 0 20 0 20
Flag Ms | s ———
) i L 180 kDa
35 kDa Flag Ms Jp—— 40 kDa FlagMs | e 130 1 Da
100 kDa
130 kDa 35kDa
e N | () Do 130 kDa :]1§8 Egg
70 kDa — - 100 kDa F. _ | 100 kDa
55 kDa - 70kDa CAPN3 Rb —_— 0
CAPN3 Rb L
CAPN3 Rb - 55kDa 55 kDa
40 kDa L 40 kDa
L 40kDa
35kDa 35 kDa Tubulin M |ese v s w55 kDa

i 55 kDa

A~T: S3 B9  FICCNAL. CCNB2. CCNEL. CCNJ. CDC42. CCNDI. CCND2. CCND3. RBIZE [1J5 2 ENIE 45 31, 25/ T b
T EAEARG BN TR, B CAPN3 R IR AT B LI, Mg 4 1 A ()2 HERE VR BT 4R TCAPN3; C129S 4R AT BRI
SEAG I, R A TR A (2 AN L E GV (1 FE AR CAPN3®S . Time(min)ZR 7~ AT S S80I (1) S BB, 03 7R A HEAT B S 36 3 B 22
TR, 207 R B SN I ()4 020 min. B /NEA GRBUT IR R 1AL E > T8, B 9kDa. /£ HIFlag Ms. CAPN3 Rb.
Tubulin MsAHiAE, MsFrRZHi 4RI T/ il (mouse), RbJIFE /R HRUE T %+ (rabbit). Flag MsH T8 I3 f Flaghn 22 ({1 & 11, CAPN3 Rb
Kl CAPN3MICAPN3“*; Tubulin Ms#: | Tubulink F, JF H. Tubulinff AR A 2.

A-I: Western blot results of candidate proteins CCNA1, CCNB2, CCNE1, CCNJ, CDC42, CCND1, CCND2, CCND3, and RBI, respectively. The pre-
dicted molecular weight of each protein is indicated at the top of each subpanel. In the figure, “CAPN3” indicates that the candidate protein was mixed
with the enzymatically active wild-type CAPN3 during the enzyme activity assay; “C129S” indicates that the candidate protein was mixed with the en-
zymatically inactive mutant CAPN3“'*® during the enzyme activity assay. “Time (min)” represents the total reaction duration of the enzyme activity as-
say: “0” indicates that the sample was directly used for subsequent detection without undergoing the enzyme activity assay, while “20” indicates that the
enzymatic reaction lasted for 20 minutes. The numbers on the right edge of each subpanel indicate the molecular weights at the corresponding positions,
with units in kDa. The labels “Flag Ms”, “CAPN3 Rb”, and “Tubulin Ms” on the left edge denote antibodies: “Ms” indicates that the antibody is de-
rived from mouse, and “Rb” indicates that it is derived from rabbit. The Flag Ms antibody is used to detect the Flag-tagged candidate proteins, CAPN3
Rb is used to detect CAPN3 and CAPN3'*%, and Tubulin Ms is used to detect Tubulin protein. Tubulin serves as the loading control of the samples.
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Fig.2 Western blot results of candidate proteins with successful overexpression but no or minimal cleavage by CAPN3 enzyme-2
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A-H: Western blot results of candidate proteins RBL1, CCAR2, CCNL1, RBL2, CCNA2 and E2F1, respectively. The predicted molecular weight of
each protein is indicated at the top of each subpanel. In the figure, “CAPN3” indicates that the candidate protein was mixed with the enzymatically ac-
tive wild-type CAPN3 during the enzyme activity assay; “C129S” indicates that the candidate protein was mixed with the enzymatically inactive mutant
CAPN3'?* during the enzyme activity assay. “Time (min)” represents the total reaction duration of the enzyme activity assay: “0” indicates that the
sample was directly used for subsequent detection without undergoing the enzyme activity assay, while “20” indicates that the enzymatic reaction lasted
for 20 minutes. The numbers on the right edge of each subpanel indicate the molecular weights at the corresponding positions, with units in kDa. The
labels “Flag Ms”, “CAPN3 Rb”, and “Tubulin Ms” on the left edge denote antibodies: “Ms” indicates that the antibody is derived from mouse, and “Rb”
indicates that it is derived from rabbit. The Flag Ms antibody is used to detect the Flag-tagged candidate proteins, CAPN3 Rb is used to detect CAPN3
and CAPN3C129S, and Tubulin Ms is used to detect Tubulin protein. Tubulin serves the loading control of the samples.
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Fig.3 Western blot results of candidate proteins with successful overexpression and cleavable by CAPN3 enzyme
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Fig.4 TPM values of the target genes in specific time points and tissues
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A: the zebrafish ccar2? gene has five transcripts. Its longest transcript, ccar2-203, contains 19 exons and encodes a protein of 792 amino acids in length.
The mutation type involves a 13-base pair deletion, resulting in a theoretical protein length of 82 amino acids. The red asterisk (*) in the figure indicates the
position of the premature termination codon. B: the zebrafish ccnllb gene contains 11 exons and encodes a protein of 498 amino acids in length. The muta-
tion introduced by CRISPR-Cas9 involves the insertion of 25 base pairs and the deletion of 3 base pairs, resulting in a net increase of 22 base pairs, which
causes a frameshift mutation. After the mutation, the theoretical protein length is only 39 amino acids. The red asterisk (*) in the figure indicates the posi-
tion of the premature termination codon. C,D: the zebrafish b/ gene has two transcripts. Its longer transcript, #b/1-201, contains 22 exons and encodes a
protein of 1 058 amino acids in length. The mutation type b/I"' involves a 16-base pair deletion, resulting in a frameshift mutation. After the mutation, the
theoretical protein length is only 74 amino acids. The mutation type 7511 '~ involves the insertion of 61 base pairs and the deletion of 3 base pairs, result-
ing in a frameshift mutation. After the mutation, the theoretical protein length is only 14 amino acids. The red asterisk (*) in the figure indicates the position
of the premature termination codon. E: the zebrafish 7b/2 gene has two transcripts. Its longer transcript, 7b/2-201, contains 22 exons and encodes a protein
of 1 079 amino acids in length. The mutation type involves the insertion of 28 base pairs and the deletion of 9 base pairs, resulting in a net increase of 19
base pairs, which causes a frameshift mutation. After the mutation, the theoretical protein length is 170 amino acids.
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Fig.5 Specific details of gene knockout
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A: the liver labeled by the fabpl0a probe from a left view, specifically the dark area indicated by the red arrow in the image. This panel consists of three
sub-images arranged from left to right, corresponding to wild-type (+/+), heterozygous (+/—), and homozygous (—/—) zebrafish, respectively. Below each
sub-image is a fraction, where the denominator represents the total number of zebrafish of that genotype, and the numerator represents the number of ze-
brafish exhibiting the morphology shown in that sub-image. B: the pancreas labeled by the #7ypsin probe from a top view. C: the intestine labeled by the
fabp2 probe from a top view. D: the statistical results of the pixel area from the left lateral images in panel A, representing the size of the liver. E: the statisti-
cal results of the pixel area from the dorsal images in panel B, representing the size of the pancreas. F: the statistical results of the pixel area from the dorsal
images in panel C, representing the size of the intestine. *P<0.05, **P<0.01, “P>0.05.
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Fig.6 Statistical results of WISH experiments on self-crossed offspring of rblZ heterozygous mutants
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(A) fabp10a probe to detect liver (left view) (B)
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A: the liver labeled by the fabpl0a probe from a left lateral view, specifically the dark area indicated by the red arrow. This panel consists of three sub-im-
ages arranged from left to right, corresponding to wild-type (+/+), heterozygous (+/-), and homozygous (—/—) zebrafish, respectively. Below each sub-image
is a fraction, where the denominator represents the total number of the specific genotype zebrafish used in this experiment, and the numerator represents the
number of zebrafish exhibiting the morphology shown. B: the statistical results of the pixel area from the left lateral images in panel A, representing the size
of the liver. ¥*P<0.05, “P>0.05.
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Fig.7 WISH results using the fabpI0a probe on self-crossed offspring of rb/I heterozygous mutants (rb/17"°)
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(& BT TR RIS R -

WAL, 25 B8 % IR SO AT A P AR
W5 R B AT, N/ R R R R B2 (purine-
containing compound catabolic process. nucleotide
catabolic process). 7 MLIE & PR HHE 2 (pyridine-
containing compound metabolic process) X% F IR
ik R I [ fi# ik % (nucleoside phosphate catabolic
process)%. IXFK H BT FH IR (P.adjustfZ i
0.03~0.04), {HAHIEIHE D U1 pkir®, gckHl nt5elO)
YA AT AR 1A e S AU [ ATP. NAD(P)H]JH
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( A) Jfabp10a probe to detect liver (B) trypsin probe to detect pancreas (C) Jfabp?2 probe to detect intestine
(left view) (top view) (top view)
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Ar ZERLIEIRLAR T fabp 1 0o FARIC IR, B P b 20085 Sk B 1) (R (88 40 o P by AAZE 205 1R = 3K AN AL AR, 4 00 32 85 24 R (/)
IRE RA(H-) s G TR (PR S o REHR/NEITR I M — AN 5, 7 BHB 2 R 2R R R BE S 0 1 B0 H , 7 T8 2 s 2B 2/ E
TR AMEH . B: IR T oypsinfREFFRARIC IR . C: AL AL A T fabp 28R ARG A IE . D: AR AN E B RTINS
THEE R, RAEFEM RS . E: BRI B R IR Gt 45 8, FRAEMRI RN . F: CRIA LB R AR Gt 85 3, FAEE IR

A: the liver labeled by the fabp!0a probe from a left view, specifically the dark area indicated by the red arrow in the image. This panel consists of three
sub-images arranged from left to right, corresponding to wild-type (+/+), heterozygous (+/—), and homozygous (—/—) zebrafish, respectively. Below each
sub-image is a fraction, where the denominator represents the total number of zebrafish of that genotype, and the numerator represents the number of
zebrafish exhibiting the morphology shown in that sub-image. B: the pancreas labeled by the #ypsin probe from a top view. C: the intestine labeled by
the fabp2 probe from a top view. D: the statistical results of the pixel area from the left lateral images in panel A, representing the size of the liver. E: the
statistical results of the pixel area from the dorsal images in panel B, representing the size of the pancreas. F: the statistical results of the pixel area from
the dorsal images in panel C, representing the size of the intestine.

El8 rblIZEREAE(rbII ) B X R WISHSE R ST 45R

Fig.8 Statistical results of WISH experiments on self-crossed offspring of rb/I heterozygous mutants (rb/I"*'>)
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IR JRRE R DN TR %
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A BE RN GRAR AN PS5 R ITPCAIE . B MufiRmutant, RISRAZ 4, IR 2000 4 #3300R; WTHAwild type, BVSFAEM, I M LR B:
SRR KL E . B b, BRAR b1 5EAE PRATS T A 8 ) 22 7t A 3 (K] FiTlogs fold change, BIIAR AL A% HU A2 N JEG (A 0] T 5 {8 AL
PRARIERZNNGT F REREL . C ZERRIERE N Z R M2 R R R M A T RS B, A2 R U, TR
REE RS, R Z 2R 2 (hierarchical clustering) 5%, 321 . FER D, JER RIS 5EIEARX B, 30 RER LS ERAC, L ORE

IRRIE R -

A: PCA plot of sequencing results from wild-type and mutant samples. In the figure, “Mu” represents mutant, indicated by pink disks; “WT” represents

wild type, indicated by cyan disks. B: volcano plot of differentially expressed genes. The horizontal axis represents the log2 fold change of differentially ex-

pressed genes in the 7b// mutant relative to the wild type, i.e., the logarithm base 2 of the fold change; the vertical axis represents the statistical significance

of the expression changes. C: hierarchical clustering heatmap of differentially expressed genes. Based on the expression levels of differentially expressed

genes in each sample, the logarithm base 2 was taken, and Euclidean distance was calculated. Hierarchical clustering was then applied to generate the heat-

map. In the figure, gene expression levels correspond to colors: blue shades indicate lower expression, while red shades indicate higher expression.

E9 BEDH
Fig.9 Cluster analysis

T BEEDIRAS KRR e B EEAER, B
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T RIRT I AL 2RO S BB AT, 1X 5 rbll
JFUIER G AR T W), S« Ja 3T i —A
ZELAT RE B VIR IR ST BRI .

XF bl 1A% B Byt JH I v 22 S R R AT
GOB&ENM, iR B XU ENTEHEELET 5
B HA G A A2, a5 A% (rthythmic pro-

cess). M Tif# (circadian rhythm). B 5 753 14 5 K]
#1845 (circadian regulation of gene expression) A
S BT TTHER T (regulation of circadian rhythm)%5 2
H (EI10B). X462 H &4 T perla. perlb. nrldl.
bhlhe4l. ciartafll cipca’s 2B IR, &
MIFLFELE R T I B AR s e B 325 7
AR I DR 38 D N ) e 27 A B0, 3K 0 St A W
(Rl R IA ) 30 2 1 R B s b LT8R 25 0 B T HE I 1 B
PO, TR RGP . SRR,
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*x2 EFRGEENENERGST
Table 2 Statistics of fold changes for differentially expressed genes

X H AR A I L0 E LR EH TR HH

[log,fold change| Number of up-regulated genes Number of down-regulated genes
[7, +o) 2 1

[4,7) 1 3

[3.4) 2

[2,3) 11 16

[1,2) 53 88

Total 69 115

(A)

GO enrichment analysis (up-regulated genes)

(B)

GO enrichment analysis (down-regulated genes)

Monocarboxylic acid metabolic | ®
process Rhythmic process (]
Chemical homeostasis - @
Small molecule biosynthetic | ® Circadian thythm ®
process
Organic acid biosynthetic process - ) Response to cytokine @
Carboxylic acid biosynthetic | °
process S ide
" bosic acid b o Response to peptide ° P.adjust
onocarboxylic acid biosynthetic
4 };Jrocess 1 ® P.adjust 8-8;
Organophosphate catabolic 0.01 Cellular response to cytokine stimulus ® 88‘3‘
process | L 88% 2 :
Modified amino acid m‘g?g:el;g { ) H 0.04  Cytokine-mediated signaling pathway . ® f}:n
Count Os
Lipid homeostasis - ) o4 o6
Q g Circadian regulation of gene expression (]
Pyridine-containing compound | o o
metabolic process
Pyridine nucleotide metabolic Regulation of circadian thythm - °
process | ©
Nicotinamide nucleotide . o Regulation of transforming growth factor |
metabolic process beta receptor signaling pathway
Nucleoside phosphate catabolid |
process Regulation of cellular response to |
Purine-containing compound transforming growth factor beta stimulus
catabolic process © ° i
0.04 0.05 0.06
Nucleotide catabolic process - o GeneRatio
0.050 0075 000 0125  0.I50
GeneRatio

A: ZZRRIEFEEP h EREERFIGO . BB 1 i 3 R 1528 H, <3 i SR B 2R R F N AR R AROCHES ), i A 25 bn 1
Sk H PRI, JAMUESES) T GO_BP—Kh. B: ZE Rk B K N R GO . It A T 3L 104N 9% H R4 T e R B K B H
AR AROCHES, [ dets 78 26 bR 1 2% H T 20, th A s 423 1 GO_BP 3,

A: GO analysis of upregulated genes among the differentially expressed genes. The figure lists the top 15 most significant terms, arranged from top to

bottom according to the number of enriched genes. The narrow bar on the right side of the figure indicates the category to which the terms belong, with

enrichment observed only in the GO _BP category here. B: GO analysis of downregulated genes among the differentially expressed genes. The figure

lists a total of 10 terms, arranged from top to bottom according to the number of enriched genes. The narrow bar on the right side of the figure indicates

the category to which the terms belong, with enrichment observed only in the GO_BP category here.
10 EETH

Fig.10 Enrichment analysis
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SR Sk B, G B[Rl F .2 (response to
cytokine). KM 2 (response to peptide). 4l
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Huhi ) A STATE 5 B A K+, AW IR H
H I Re sk ok o] FEUR 2 B VR0 (M) B AL 58 S 5
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i S SEEOE Uy A SRR IR 4R ) SOCS3 2 Ik g 5
RO A% O R, HRIA TR A4
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pathway) 1% TGF-BRIE 40 il S )53 15 (regulation
of cellular response to transforming growth factor beta
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MHHRHHLEE S8R,
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WIS AL A 4% . —J7 T, CAPN3IYIEIn g
BRI 107 (18 e e 1, PRl R IR 55—
J7 1, PP2A:BS55 ) 2 W& A V] fg il 4% p 107 1S
PERAS, fomn S E2FF S R 7 FORMAH EAEFH . P
Fe A& 1 W3 (R 4% FH SRR 40 & 3R G/ S e S (1L TR
SRR RS, HOAATT 75 2E4R i DEF-CAPN3IE
P55 B TR A A A D 4% () 28 ELAE AR T 5 1)

1 B 30 2R 1) B 1 KT 2 A T A B (4
R BUE AR, AT TR X E R
FACPE @B T A 0. MFRATIN 25 275040 i
JE B 2% H AN AN 0 4 21— e 4 B A 3 R 2 CAPN3(1)
JERA , i B 448 K 22 B4 i B 2R 11 % il R e S O
ANFHECAPNIKI S 5. 1% R Y5 T 5T i B ) 2
FIBEAT IR, D) b 3 R &, 7840 Ul B S T S8
JRRE R B AT s, D, A SCISIER T
RBLI1GE#8 4% DEFi% S B f# , #t— P UiB] 7 RBL1&Z
DEF-CAPN3E GW)HIEA, 3 R T 1285 1 g
EEA R BBt Fidt— 20 RN, pS3 v B &
p107-E2F4, 4142 DREAME &), XAl 37 T p2 1411l
YT A A SE IR 0 1 Uk, AT 1HEN DEF-CAPN3R#
fifp53J5 , DREAM#ESELA ) 1 1 ] 8 -5 AL AH G,
NI SR AT B B T AR

B ENFRATTA F CRISPR-CasOFi A, #7131
oyt R IR ) R AR A . 23 R B R IS RN 3R AR
T cenllb. rbll. rbl2. ccar2 7R (HAE R REFR
fcenllalf) AR o

JRAE A2 AZ S 56 45 RAB 7R, rbLI R rbI 2 5L DR R X
A B R WR B AR R, R T B
BRI EA FTAE . EFREA, rblIE R R T
HFNER B R, rbl2 I8 WA s e , X
K4 BT~ 105 dpfFFE b LA 535 w5 T rbl2 () TPM
A A ARG 5 AEIRAR T, rbl BRI (R K
VA it A R, rbI2 AR S STTARR 3E T FE IR
B (EMmTE S, bl BRI R A 1E O, rbI2 1
BRI d] 7R B R . AR SCHEN, XA 55
Z AR S N ) = 4R ] BE & T IR L& [ )7 (isopro-



310 BRI -

| | | |
1 2 { 3 4 : 5 6 : 7 8 : 9 10 Lane number
| | | |
+ -1+ -1+ - |+ - |+ - Myc-DEF
| | | |
| I I | .
- + : - + |- + |- + : - + pCS2
| |
¥ #! = =1= = ls = e = FlagRBLI
| | | |
- - 1050050] = - 1025025 |- -  Flag-ps3/ug
| | | |
| | | |
- Tt - 10500500 - - 1025025 Flag-p53%7H /ug
! | | !
— 130 kDa
| | | |
Myc-DEF | "= - - - —
{ : : : — 100 kDa
Flag-RBL1 | #== we—) ] | : ’— 130 kDa
Original grayscale value 10 1.66 [r 1| } :
Normalized grayscale value ~ 1.00 1.61 : : : :
T T T T
T e— e - - e — — -
Flag-p53/p53R17sH : | | | 55 kDa
Original grayscale value { 1.00 1.08 i 0.78 0.80 i 0.48 0.97 iO.Sl 0.45
Normalized grayscale value 1103 0.89]0.75 0.65| 0.43 0.78 [0.46 0.43

| | | |
| | ] | — 70 kDa
| I

| |
Tubulin” | gy - -q: s e A
Original grayscale value  1.00 1.03 |0.97 1.22]1.04 1.24] 111 1.25]1.13 1.04

| | | |
APy HEK293 T (F)3d Tk 530 45 S, 1 R TE 6FLA P HEAT , WAORER IR) D ORI 44 J5 24 ho TS BORLIM AR 2835y pCS2'e “+ i 4L
FHRIRR L 6L AL EEN Tk, "R e N . Myc-DEFIEULE N2 pg, pCS2" N1 pg, Flag-RBLINT g, Flag-p53790.5050.25 pe,
Flag-pS3®017™H41 34 0.508%0.25 pg. WBZ A T MycH 2t (BN HE 2 B ARATBR A, 0912-2)4 1 Myc-DEF, Flag iS5 (FUM 42 AR
HIRAT, Ms M1403-2)K: I Flag-RBL1. Flag-p5371 Flag-p53%"", alpha Tubulin 2 H1(FT/H #2404 RAG FRZA 7, ER130905)46 1 Tubulin. ¥k
T S TAE 5 % B ISR AN, R EE L  T O RRSAN LR B A EE (K N R 11  T R EFRAE (protein ladder), #47 JykDas
JEL R AR FEE A8 P LA e H AR 2 1) BLSE B, A FS 2K A8 E 526 2 P {8 Bk DATR] K 1) Tubulin 2K B (EAS 3], AT LAS N2 S0 A4S0 H Ak 11 5 (1)
FUKF . 4T Flag-pS3IFlag-p53h ™1, ARSI KA 1240, JLrH0.50 pngdl % B H BRIV, 1X & [N N DEF-CAPN3 X A A & g+ 34
PR, G SRR R R 2, RVEATLE FRARAT Sy, M A 3. 7 [FIRE (Y BRI Gk T, Flag-pS3FIFlag-pS3t ™M fig R ik i £ T Flag-RBL11)
. Bk, 76 L Y Flag-pS3 1 BURE: Je i 00.25 pghd 74 REAE R I 80 B 52 1 B I %

This figure presents the results of an overexpression experiment in HEK293T cells. The overexpression was performed in six-well plates, and samples were

collected 24 hours after plasmid transfection. All plasmids were constructed using the pCS2* vector backbone. “+” or numbers indicate the transfection of
the corresponding plasmid into the respective well of the six-well plate, while “-” indicates no transfection. The transfection amounts were 2 pg for Myc-
DEF, 1 pg for pCS2*, 1 pg for Flag-RBL1, and 0.50 or 0.25 pg for Flag-p53 and Flag-p53*'"*". For WB (Western blot) analysis, the following antibodies
were used: Myc rabbit polyclonal antibody (Huaan Biotechnology, 0912-2) for detecting Myc-DEF; Flag mouse monoclonal antibody (Huaan Biotechnol-
ogy, Ms M1403-2) for detecting Flag-RBL1, Flag-p53, and Flag-p53*'”*"; and alpha Tubulin rabbit polyclonal antibody (Huaan Biotechnology, ER130905)
for detecting Tubulin. Lane numbers are provided to facilitate detailed descriptions when referencing this figure, and vertical dashed lines separate differ-
ent comparison groups. The numbers on the left side of the figure represent the protein molecular weight markers (protein ladder), with units in kDa. The
original grayscale values reflect the true intensity of the target bands, while the normalized grayscale values are obtained by dividing the original grayscale
values by the Tubulin grayscale values from the same lane, providing a more objective representation of the actual protein levels. For Flag-p53 and Flag-
pS3®7M two gradients were tested. The 0.50 pg group did not show degradation, as the degradation of substrates by DEF-CAPN3 is limited. When the
baseline protein amount is high, degradation may be difficult to detect even if it occurs. Under the same transfection conditions, Flag-p53 and Flag-p53%'™"
express significantly more protein than Flag-RBL1. Therefore, in the figure above, significant degradation of Flag-p53 was only detectable when the plas-
mid transfection amount was reduced to 0.25 ng.
El1l RBL1A LUK DEFE SRR
Fig.11 RBLI1 can be induced to degrade by DEF

tein), 73 AFEAN [ FVE AL A% B o 4 T S A S ERA B, ER B EACFAE R (*P<0.05).

BEAh, ARSI SRR T rbLI AN rbI2BGRARNA, IX UL, Rdrbll JE R PR A 8 BN RE AT R, IFAS
FAd Ffabp 10 RIS T RFAER R B GO0, KB RN rb AT SRAFAE TR IN (4 5 PR U A RONE, B K
T RIE AL G RAAR BT AE R AP AR R 2 (|22 54T 5 dpfTH LR »b AT 2.3 5 T rbI2 1) TPMAL
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(A)
2 dpf 2 dpf, HS
AB capn3b™- AB capn3b™-
— 130kDa
a-Rbll =] - e :
1= handber B |
L *
—l— 100 kDa
Original grayscale value 1.00 1.39 0.43 0.77
Normalized grayscale value 1.00 1.37 0.43 0.80
o
— 70 kDa
a-Tub -
oad D S e | ;.o
Original grayscale value 1.00 101 0.99 0.97
5 dpf 5 dpf, HS
(B)
AB capn3b™- AB capn3b™-
4-Rbl] —> A — 130kDa
Wi ‘} WS - )
Original grayscale value 1.00 1.48 1.28 2.61
Normalized grayscale value 1.00 2.08 1.54 4.13

a-Capn3b “

o-Tub
Gy e, — 55KDa

Original grayscale value 1.00 0.71 0.83 0.63

Az FIHI2 dpfayE 51 30647 (URbILER F R A SESS . B: A S dpfal Rt B k4T (FRbIL & 1 RAG IS 06 . ARIB AR SEIG A4 RE 250 R H 1 1 4
TU(AB). capn3bFA A (capn3b™). B0 EE IR 54 A IEH IRLIE (28 °C)RIFB(HS, 35 °C). WBZr B T pl07/RBLL A Z Hi(al =& A=)
FARARAF], 13354-1-AP)KElIRbLL, zfDef(s1) % 2 Hr(Bi M A2 A FARAT IR 2 7))k M Def, capn3b i HLHT(AbmartA &, ZF055576)Ht 445 Il
Capn3b, alpha Tubulin® % Hi(HL M 42 A VIEARE R A 7], ER130905) 45 M Tubulin. & Fy 75 35 53 10407 A 8 19 4 7 5 & br il (protein ladder),
FALNKDa. JRIR A EAE FT LAk H AR 2% i (1 0 S0 2, At A J5 A FZARL i o 2 FZARL R AR PRI A Tubulin A FEARLAS 2, 7T LS 2 S 4 2
FAR R TR IR o INBOE ARSI AL T capn3bFEZR AN 153 R (K503, REAS 43 5 5 B0 AN — A MR a0 25 1, {8432 284 B ]
Mo BUAb, 9T B E G LN IRbUAS LSRN, P LA AN B T ROk

A: detection of Rbl1 protein levels using 2 dpf juvenile zebrafish. B: detection of Rbll protein levels using 5 dpf juvenile zebrafish. For both A and

— 70 kDa

B, the experimental materials included wild-type (AB) and capn3b mutant (capn3b™) zebrafish. The rearing conditions were set to normal tempera-
ture (28 °C) and heat shock (HS, 35 °C). WB (Western blot) analysis was performed using the following antibodies: p107/RBL1 rabbit polyclonal
antibody (Proteintech, 13354-1-AP) to detect Rbll, zfDef (s1) rabbit polyclonal antibody (prepared in-house) to detect Def, capn3b mouse mono-
clonal antibody (Abmart, ZF055576) to detect Capn3b, and alpha Tubulin rabbit polyclonal antibody (Huaan Biotechnology, ER130905) to detect
Tubulin. The numbers on the right side of the figure represent the protein molecular weight markers (protein ladder), with units in kDa. The original
grayscale values reflect the true intensity of the target bands, while the normalized grayscale values are obtained by dividing the original grayscale
values by the Tubulin grayscale values from the same lane. This provides a more objective representation of the actual target protein levels. Heat
shock is a routine practice in our laboratory for studying capn3b mutants. It applies an external stress condition to the zebrafish, making phenotypic
manifestations more pronounced. Here, to prevent the possible lack of Rbll accumulation under normal conditions, the heat shock condition was
intentionally included.
El12 Rbl1{Ecapn3b”h FE R
Fig.12 Abnormal accumulation of Rbll in capn3b™
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(Homo sapiens) K (Rattus norvegicus)H I 5T,
pl07H1p13072 i 40 i i S 4% g i) DA &
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IR SR — 87 XA IE B G pRb(FR 94 Ji5t
BEAHIRE T ), AT 24t ) B0 g4 i) e A O
YEM .

pl107E: Z3l i 5 E2F ¥ S [A 1 45 & ) ) L e
SEVE T, NTTAE G 3 PR il 40 B ik N SHA, e 75 41 A &
W P b KR CEAERTUY. BAR pl107 5 pRb.
p130fA1E—E K IREE S, {H pl07HIHR 2 1] 5 F 5L
JH R A8 53 248 o S B R B e 5, i G G B A
SEA RIS, 7T e BUR 4 e Bk B I A
WG IR G 5E , T -F 80K & 530 I Y 40 i £k
BEAE . AplO7HER S T EUAH A A A 15 i B ek 2z,
IR ) RS AT B 2 R e 52 2 PR o 7EFAE Y R & i
TR, 2 PR ] 4007 000 A 2 sl 0 T 4 R T 1 1 2L 2 2
MR B RN R R E

JHF JUE 7 5 A B AT I T 48 P (hepatic
stem cells) =l {44 20 i (1) 3G FE AN 734K . pl1O74E 4 L
JE J0 47 1) R0 4 s e R AR A, BRR
p107 7] fie 3 FIIX L6 24 i B AT A 29 L ) 395 Bk 2% B
FEE, MR R B A Ak, plo7 ] BEAE R
G It T T I L i 1) 23 Ak, T R 2R T R A
13— HB o> T4 AT B AEA LA RS, AT 2
JUE P RS 2 PR B

pLO7AE I B ik 4 o mT f i ik 4 4 PR 39 5
I3 A B R S 22 AN IR AR R A IR R A o R BR
pl07J5, I RSTak NAT e S 4B IG a2 fR . 41 i
BT A M D RE RS . 2 o U 4 S i S HARAR
EENLHIA A G ARREIW T AT DLk — PR R Ix i
BL, 486 oAl RoZZ IR A ) T RE , #7 pl1078Hk 2K
XTI B W Bk sz . ORI 78 &, p107
R H 7K V32 AURKA (Aurora kinase A)ii$%, AURKA [
PRGN p107RIEIK, 2 WIFRAR AT B9, $27R
ANRIZHZAR] et 2 ML ok 15 p 107425, S5
JIEHH CAPN3 & 1 g I T2 BT LA o

NEH b Wt FE R B, pl07 /1 pRbIY I fiE

p1075%f pRb 1) L BEEAT #b 78 FIIE 5, 2 AE A0
BENSHARE, w7 IE A BRI AE T, A TH Y S UG S
TR, AEBE T A 0l rb LR 6 T R B IR B
FERONA BRI 255 BARA B3, (H2 B K
AN 15 (*P<0.05)], T [FIB R 5% rbI12 (1) X FEAE WA B
HoR M. XERIE N, 75D, Rbl1 F A7
ELF N ) p107, pRbA 2 SH7, Rbll
HE AN TR A SR A

p130/2 5 pRbM pl07& VIR IS =/ NMEA, &
FEAEAM AR GIHEIEM . p130i@id 5 E2F A%
S5 G5 A F AR LA S i, T 100 40 P SRR
BUTOER R, rb2 B R TR T IRIRIR G, #ER
rbI2TEBE Ey i iR 1% & AR AR T e 78 40 R

N T BN, pRb. pl07. pl30R] &5 I 7E
AR SRR R AR A, IX R e A ITE4H
JEL R4 ) o (R AE ELAE F R AR 2R B U8 ARSI T
) S 4 B 2 B RbLLAT ROI2ZEAS [F1VS AL 28 B (FFIF
Rz R A SRR E L, X 5 50 N I AR T R o

[ 0 T S B e o PR 8 SR, bl TR SR R A 5
e 1Bt R AR A B, T rbI2 DR s 0 DU A
TEAA R AT AR A5 5L, rbLIRN rbI2 i SRR
—WHo IXFE— R L AL T P IR R,
ATRA AR, # I IR B R B R
Wi, ARSRIG % (1 — A E AR IR E 5 A,
— H DR IGHIT T80 2 B S8 I i A At 3 2 R 5 1)
HWEE IR EARTH, FATIEEA LR H
fh RGu 8 B AR AR BRI SRR 2 [AAFE 2 5. X[
REAZDE N rblL . rbI2E R 52 AR B BN AT R (22 57
EAR M, (H2 B KRS = (*P<0.05)], W
BB T R BT R I AT KA I G Tt 53
Mr, AR RIBRARAEE 2 2 7. RbIIAIRbI2E AN RbA
S5 R 1, RO AR 2 A0 19 JlE REAH AR (retinoblas-
toma), Y MAFRKE, B e LAk N REERBITFIRbIR AT
RE/EHRIE IR B P ElEH . HRXIFdEAR L=
JEF I E A5, B DA A R A TR A Gt oA

TEXT A HEPEBE Ty (0 34T 5 0 FFUIBR AR S5, A+
TR AR, rblI 255 R R AR R AT %,
P27~ RbUUK I ShREAT BB . fedls — TR 7245
HH 2 R B K (Te) 2 ke Al R B0 5 AL B8 T 1)
SRR 2R - 74 B0 RAL (W RbIp 1078 ) 5 T,
Tof Fi (1 40 i 5 e B A8 i ) B9 i R IR 7R, 48
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L 3R 1 oS A B B ) e g 2 A 114) B2 [+) R
£, T R EE st T RS T . X S ERAITE kbl
HF VIR J5 82 2 F) AU T2 R BB ARTT , e AL A48
AN T A0 AR A B R A R S e A R RO E . 3R
AT AR — 2515 B T RNA-seq3dh (13 57 - AQ
sy S o Y S Rt AN SR I v o7 AW Y S
55 R IS FRAR AL, T RE S B bl I AR AR
Dhfe &AL, MBIV FR GRS T . K
FUR IR bl IR T SR B B £ JH AU ) 28 22 44
5 IhREEAL, 1X 5 2 BUARIE [ ERE 7 PR B mDER
gl R AU S R A LR AR . X SRR,
DEF-CAPN3/Def-Capn3bifl i 1] fE i i [ i 10, 45
p53. RbIIFENBIZ AR, 7620 H 4% 5 Ik
RGFEPRIFZOERM . BT RTFEHE—BIRA
T ST RO Afe] 75 -4 i s i ix e i 72

A FN BT capn3b™- S AR R & 1 T
F Capn3b 7 ZRbI1 85 H 57 1 24K, #275RblsE Capn3blt)
JEA, I FE AT AR SR 5 S i R A R R A
I ®, gh A NN SLE o DEF AT PS5 RBL P4 f#
[PsRae gt R, FATAE AR, Rbl1 & A AsE AT
fit5 Def-Capn3bi& 2 2 [AFF(ERR R o LA, capn3b’ Fi
rbl R BIAFTEARARIA R 2 &b o B9, capn3b™ i
rbl BB AE R E . HIK, 7£3~5 dpfF- K BB
B, capn3b” BE A1 [ TR: 5 dpf I (R S BN DG A
FHECT B AR 25 MY, 7E34.5 °Craplia b B R, 3 dpf
(1) capn3b™ BE 5t I B RS il O LK AR R Y
H.2 dpfisf RIS 73 WAk IR & it i, B3 dpfif k&
TEH, RIX AR B R R & 252 25 FE i 1) 5
SO, TR (REA 60 1 U FRAER, 3 dpflS dpfif)
capn3b FFIR R 2 /N1 AR Y, AE o (R 12090
FL G FRGART, SRAR AT S i 2 K T B AR A, 1A
FUFFNE R & 0 2 BEAR A S W U ™ T bl PR ES L E
4 dpfif FFIE A B TP AR B SR G . &, 5T
FAEBE S M 5« capn3b™ (£ PHJE FHUE PR A AR T3
A RUBE Tt 25 4ER ), bl FEPHG 22 I EFET R .
P (L 2 TR AE AR, (22 S B Ay Bl 2, X s
71 Capn3bAH Rbl1Z [H] (1) 5% F3 AN R f B (1) — 2% &, 1T
A T HARRTRIE ML .

XF rblI A rbI2 I 5T, 9 CAPN3/Capn3bifii 424
Fi WAL 7O EbE . 45 A i A% pS3. Chekl .
Weel %5 K7 B 5%, 1% 46k It — 0 & T DEF-
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