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Abstract Transposable elements constitute nearly half of the mammalian genome, exhibit remarkable
diversity across species, and have acquired new regulatory functions during evolution and development. In both
human and mouse embryos, the robust silencing of transposons—particularly LTR elements—is essential for nor-
mal development, yet the underlying molecular mechanisms remain incompletely understood. Previous work in
mouse embryonic stem cells revealed that caRNAs (chromatin-associated RNAs) are highly enriched for METTL3-
installed m°A modifications. Loss of METTL3 impairs caRNA degradation and leads to enhanced chromatin acces-
sibility, demonstrating that m°A can directly regulate chromatin states via RNA. Further investigations further iden-
tified FTO as a key demethylase controlling m®A on L1 RNA; FTO depletion results in m°A accumulation, reduced
L1 RNA stability, repression of L1-containing genes, and aberrant activation of 2C-specific transcripts, underscor-
ing the central role of the m*A-LINE1 axis in maintaining chromatin homeostasis. To investigate whether a similar
mechanism operates in human cells, METTL3 was inhibited in METTL3 in naive hESCs (human embryonic stem
cells). METTLS3 inhibition triggered widespread activation of totipotency-associated transcripts, including 8C-spe-
cific ERV1 and ERVL-MaLR LTR families, accompanied by markedly increased chromatin accessibility and a shift
toward an 8C-like state. Strikingly, targeted reduction of m°A on the primate-specific L1PA family recapitulated the
transcriptomic reprogramming induced by METTL3 inhibition, indicating that L1PA functions as a key upstream
regulator of the human 8C program. Mechanistically, m°A on L1PA RNA dictates the selective recruitment of chro-

matin regulators: m°A restricts EP300 binding at ERV1 regions while promoting KAP1 enrichment at ERVL-MaLR
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loci, thereby suppressing aberrant LTR activation and maintaining differentiation-associated chromatin compac-

tion. Loss of m°®A disrupts this balance, enhancing EP300-mediated H3K27ac deposition and weakening the KAP1-

H3K9me3 silencing pathway, ultimately re-activating 8C gene networks and LTR elements. Together, this findings

uncover an evolutionarily conserved yet species-adapted mSA-L1-LTR regulatory axis that governs LTR silencing

in naive hESCs. This work highlights the critical and conserved role of m®A modifications on repetitive RNA in

shaping chromatin structure and directing cell-fate transitions.
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A: LC-MS/MS quantification of the m°A/ACGU ratio in non-ribosomal RNAs showing reduced m°A levels in M3i hESCs compared with Ctrl; B:
growth curves showing decreased proliferation rates of M3i hESCs relative to Ctrl. Cell numbers on the final day were used for statistical analysis; C:
AP (alkaline phosphatase) staining showing impaired capacity of the naive-to-primed transition upon METTL3 inhibition; D: immunofluorescence
staining showing that METTL3 inhibition increases the proportion of 8CLCs during both naive maintenance and 8C induction. Green fluorescence indi-
cates LEUTX expression; E: schematic illustrating that M3i blocks the transition from naive to primed state while promoting induction of naive hESCs
into 8CLCs; F: confocal images showing integration of EGFP" hESCs into the ICM (inner cell mass) and TE (trophectoderm) of mouse blastocysts.
DAPI, blue; SOX2, yellow; CDX2, red; GFP, green; G: quantification of the number and proportion of Ctrl and M3i naive hESCs contributing to dis-
tinct ICM and TE lineages in chimeric blastocysts.
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Fig.1 METTL3 inhibition alters pluripotency dynamics in naive hESCs (modified from reference [35])
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Fig.2 METTL3 inhibition induces transcriptional activation and chromatin opening of 8C LTRs (modified from reference [35])
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A: summary of global changes in repeat RNAs upon METTL3 inhibition. Top, m°A levels of repeat RNAs in Ctrl samples; middle, logz enrichment
scores of hypomethylated (hypo-m°A) peaks; bottom, repeat subfamilies ranked by the number of copies covered by hypo-m°A peaks; B: summary of
LINE1 subfamilies upon METTL3 inhibition. Top, log:(fold change) of m°A levels; bottom, number of LINE1 copies covered by hypo-m°A peaks; C:
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Fig.3 Site-specific erasure of m°A on L1PA recapitulates METTL3 inhibition-induced activation of the 8C transcriptome

(modified from reference [35])
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A: schematic illustrating the experimental workflow of the ChIRP assay; B: GSEA showing global upregulation of ChIRP-enriched LTRs under M3i
and sgL1PA conditions; C: bubble plot showing the abundance and differential changes of chromatin regulatory proteins identified by ChIRP-Mass
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IgG; E: schematic model illustrating the molecular mechanism.
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Fig.4 L1PA targets 8C LTR regions and recruits EP300 and KAP1 in an m°A-dependent manner (modified from reference [35])
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