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Abstract

Metabolic reprogramming of tumor cells supports tumor initiation and progression. On one hand,

metabolic enzymes provide materials and energy by altering metabolic pathways; on the other hand, they also exhibit

non-metabolic functions. The non-canonical functions of metabolic enzymes play crucial roles in tumor progression.

This review systematically summarizes key advances over the past decade, explaining novel mechanisms by which

metabolic enzymes contribute to epigenetic regulation, signal transduction, and tumor microenvironment remodeling.

Metabolic enzymes employ diverse mechanisms such as nuclear translocation, protein-protein interaction to directly

modulate gene expression, signaling network rewiring, and immune responses. These findings provide a novel direc-

tion for developing precision oncology aimed at the non-canonical functions of metabolic enzymes.
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1.1 RS 5ERRIKFE
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B 53 . BRI AT I 55 A B B 6- 1 iR R
W -2- W / SR -2,6- IR i 4(6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase 4, PFKFB4), f#
IR -2,6- —BETR 15 B AN 2R A, 300 T 165 Jn 4 1 i
AR A B . FLIE R B W ALR
PFKFB4 L G A HAR U Ty e R FE 52 W b g % 75
(I/E ] . PRKEBAIE i 38 o5 L i a8 240 g mios 2 50
5 53 J I X -F-1(Snail family transcriptional repressor
1, Snail) 31k i 40 i 27 3% 58 B 15 SR ok
L HE-ES RN A ARk, M 4 e 4 4= 200
PFKFBAFE 52 B S5 53 2235 1) 0% 8 ke [R) 8 Jeb g e
B R EEAEN, oA KM REN 15 S PEKFB4E
FIR BT, 764 W PFKFB4E F il o (E #E B A B 3
Al 1a(hypoxia inducible factor 1 alpha, HIF-1a)ff]
PRI R 7L s i e % N 5 B 40 B (glioblas-
toma, GBM) E K | [H] i PFKFB43 1A th 52 £ HIF-1a
V%, HIF-10d8 1 4011 E37Z 2 IE 2 F-box/LRR
52 75 17(F-box/LRR-repeat protein 7, FBXL7)3# A M
11734 1 PFKFB4ER [ REE 1 , e kA /N 20t i e
(non-small cell lung cancer, NSCLC)4 K13, 7Rk
SRR, e 34 E i (i g i A I A PR T IR % A
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SR

HBECIRZS, W70 R L PFKFB4AtH AR _EiM A/
% -6(interleukin-6, IL-6) (1) 2238 R AR E 1f A A= Bl 1Y
W1tk 41, PFKFBAIE AE I8 1 1 10 25 18 15 52 1k 4L i
7571 2/3(steroid receptor coactivator-2/3, SRC-2/3)1
o FLHE SR E 1, JE Ik SRC-2/3 4 5 1) % IR B ¥ (tran-
sketolase, TK)F14E A K 2 IR H 5L 7 #2 B 4(protein
arginine methyltransferase 4, PRMT4/CARMI1)3 1% L
R 9K ) it e A 7L s S # SI(E1A) 6

B G0 o 2 4 M B ) B ) 2 —, SR A
AR A I R R R R IR IR . B
AR A A A T, I P 4 2 S (sphin-
gosine kinase, SPHK)H A4 AF il 2 7 1-% 1 (sphingo-
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RAFAE, SIPHERL B 7 b 55 70 b 45 & GEE B BTk
SRR S8 BAF 5l B AR B AR A PR 524K (epi-
dermal growth factor receptor, EGFR). 5t LK -3-
P /AK T 22 218 — 75 28 5 U8 1(phosphoinositide
3-kinase/AKT serine-threonine kinase 1, PI3K/AKT).
S1P/HIF-105 52 M iR it e 72 53— 75T, SPHKH]
DUAE B SR 7K T 47 ke PR 308 R M 7 ik R e 3 R JR
PSR NS o RS RO 1 FE A 7 3(metastasis associated
1 family member 3, MTA3)#& SPHK 1% i 1% il g 1
FFHEBET - 1RCAA 1 (programmed cell death 1 ligand 1, PD-
L1 N HE R, SPHK il MTA3/PD-L 1l fi2 i 55 ¢
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B TAV: F R R R0 7

: SPHKTE B 28 . GBMAN B & it B (1 E & S Th fE; C: ALDOATE B

o EMT: bRzl 78 Jf 46, GBM: )R BEAIILIR; HCC: JIF4iMi)E; CRC: &5

A: non-canonical function of PFKFB4 in breast cancer, lung cancer, GBM and melanoma; B: non-canonical function of SPHK in melanoma, GBM and
virus infection; C: non-canonical function of ALDOA in gastric cancer, CRC and HCC; D: non-canonical function of UCKL1 in CRC. EMT: epithelial-
mesenchymal transition; GBM: glioblastoma; HCC: hepatocellular carcinoma; CRC: colorectal cancer; IAV: influenza A virus.
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Fig.1 Metabolic enzymes regulate gene expression (image created with BioGDP)
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kiR PY, SPHK 134 Af LB #% K 1 kappa B
WF.2E 1(nuclear factor kappa B subunit 1, NF-kB)/IL-6/{5
5 S RN S TR T3 (signal transducer and activator
of transcription 3, STAT3){5 541, i[5 A e y% B 24
J§ 4 T 5 23 (pentraxin 3, PTX3) [ 5%, &gt
GBMZH i E KR 90 [ 2T, it 4h, SPHK2 Al i i 417
il T4 2 -B 1 (interferon-beta 1, IFN-BI)HIHE 520015 F
4R R i (K 1B) .

B 1 B4 YA R Ak, AU Rl
SZIIDNAS S S s i R N 580k . b — R
P 2 A(aldolase, fructose-bisphosphate A, ALDOA)
PEAL B -1,6- B IR A B H vl 3-B PR AN — 2 AT
Bz . WAL ALDOAR] LLIE L ¥ INEGFR. AKT
RO 22 24 )7 15 Ak 85 (1 3 (mitogen-activated pro-
tein kinase, MAPK) F B B 14 7K 1 {1 128 5% 1D Jes 40 A=
2%, ALDOAIE R WAH AR5 56 % 240 U #%, fEDNA
RAFAGR, N B ALDOAR B S E WA A, 5
DNAGUEE W 24 bR B H2 AL B A SRR X(H2AX
variant histone, y-H2AX) 3L 72, HL#| L, ALDOA
5 DNAXUGE Wr 248 5 104 0 28OS B DN AR £
¥ (DNA-dependent protein kinase, DNA-PK)#/
B4 P 5K H5F 2K 1 (ataxia telangiectasia mutated,
ATM)H ELAVEFH , 3 I0 DNA-PK (¥ [ B2 14 7K1 LA
T PR T AN B = DNAXUEE Wi 2B R RE 715 BE4h,
ALDOAIS ] i i ATM-PoloFf 4 1 (Polo-like kinase
1, PLK1)5 58 B #1 1] DN A 545 BT 204 48 ffd & 3
RELF , AN TT 22 25 10 24 415 25k DR A A2 0 1k 402 3t g 4
FA7 5 BB 1C) . Brit 24, AU Bt 2 5 i
BAAN AT I, B R SO 1 (uridine-
cytidine kinase like 1, UCKL1 )i i ff {4 bR 5 Al i
SRR AL, R ik A0 T2 48 ML BEL B V8 B A IR 7
% 72 11(solute carrier family 7 member 11, SLC7A11)
(P8 13 Ak s A M 2k SE T2 D) .

1.2 RS 540E8 CHLERE

M A S RAE AR B () B AE T 42
HEER, HEA BB HAE S OB G
(histone acetyltransferase, HAT)F1 4145 1 2 4BEAL G
(histone deacetylase, HDAC)i# , = & 1 i £, T 4l
liff A (acetyl coenzyme A, acetyl-CoA) 7K, JE4ER
WEFUR I, AU B AR I AR IR 4ERF acetyl-CoA
WEsAs, e Reis i RN IR BRI A R B O
ARES

VA A 2 Bt 2% (pyruvate dehydrogenase, PDH)
Fe HE B AN =R IR I 1) G B A B, M AL
P R J8 2 A2 i acety1-Co AP, B 5 & IR AR K IR 1+
BN BB SR A RIS, PDHAT H 2R AR B
AWK, 205 Gi-SiHE A S HAAR Sk A7 5%
B ER B EE ) CBEAL (R a2E 40 S N G 3T
[ SHAILJERY . PDHIE1 N $alpha 1(pyruvate dehy-
drogenase E1 subunit alpha 1, PDHE1a)7t DNA$:1)
MNEH RIFEBEIEH, &2 R ADP-ZHEEALIEIN 5,
PDHE lafRid 554 8 e th iy , 814 72 DNAXUEE i ¢
Qb 58 P= A2 acetyl-CoA, B A G5 DL R 8 2
FEAERF I PR 2 £ P34,

FUIRAEH B 1 SIEAG RS R Gk . 3L,
TR it U A (lactate dehydrogenase A, LDHA )i i #%
WA & 42 4 i acetyl-CoA, HIEENAEH LBEL
FRARL L T 0 I 2 (AR 337 ATP-F7 45 R W (ATP-
citrate lyase, ACLY)E NIEFEHC 5 acetyl-CoA S
S 5 — DGR, L T S FLER R B LR
i ACLY WA A AR Gt J a5 Al 2R 11 &4
MiAl, e 72 B = 261 T 1) GBMAH I AA 5 AR &
[ AT B 2 1 U, A FLER AR B T AE N Y
V5t HDACHIHIF , 7E E BERE AR A A R I
HDACAHH I8 A [ s i 4+,

434 J5 2% TN B 1R XN 408 (4-hy droxyphenylpy-
ruvate dioxygenase, HPD) & % Z 1R 43 il A it vp 1) 5%
T, AR IR TN R A R SRR AN O TR, &
Pk 2, R w3t — Db A Al acetyl-CoA . AWK
B, HPD AR T acetyl-CoA /K-, i 3@ i AT i
Bl(liver kinase B1, LKB1)/AMP{ i (1) 2 [ 4 i [ad-
enosine 5’-monophosphate (AMP)-activated protein
kinase, AMPK {5 5 HlifI| S AHD A C10 H 4H il 1% %2 Jfa )53
FEAL o IX AL A (] 38 0 1 7] 26 4 -6- B3k 1R it Sty
(glucose 6-phosphate dehydrogenase, G6PD)F) 45,
R 7 T £ 4 7 A e g A R

RS 5 A RO QBB AR =28 (1)
AR U B AR = P W acetyl-CoA L FLERIE N 4
P A B L B JEE ) B 1 R 5 (2) AR I L3R4
HAT/HDACH B AR E A7 (3) A g L 7
HDACT e [ H ¥ LR AIRES . Ak, KA
It 5 HDACH. 40 il i Ar AL FAH G EE A 3R IA, 5
TR Z 5 HE A BB . R
FITIE , R HDACH ) 77) © 34t 136 77 #8751
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SR

TR, AH E TSR 2 HON ) R A R, ) SR
TR MR (FE D). B, DU E AUl & LIRS 1) &
P A N B SF R ARSIV, B BN SEARIR IR TT T R
HrEgAE o
1.3 KififgEE R I B ILIEIE

20 85 1 FLI9E 1L (histone lactylation) 23T 55K &
() — Pk B R AL S, HH FLBRAT AE 1 LIt 5L ]
M ERETHEAOBARKIEN S X— KK
R AR U 5 2 DR s R 4 T O L G RS R T
AU e 0 1A% 0 .

I R 7R 7 FLIR 2 5 R AL W% 1 )
— WL, LI%5HES A R 2 (acetyl-CoA synthetase 2,
ACSS2) ] HE7  ALMe4 iG A& Rl , AL FLIR A
T A(lactyl-CoA); [FIF ACSS2fiE 5HIEIR &
Mt 55 2 52 A(lysine acetyltransferase 2A, KAT2A)25 4,
I 51 FHAG LR AL B 52 2 2 B L IR Ak, i
A E A AB LB . KAT2ABE AL LA R A
H3, i Wnt/B-% 3 & [ (Wnt/B-catenin). NF-kBF
PD-L15R12, {2k #0225 Jod 9 (1) e e 1 1 54

BRABEAIE SN, ACSS2TEA [Fl i RT 5 5t R &
BTz R ML AR . ACSS2f il 4
A AR B8 B WD S 52 1k S(peroxisome proliferator-
activated receptor 8, PPARD) g &) [X 38 H3K 27/ &5
1) M4k, a3k S 2 HE TR % 2 B 1 (branched-chain
amino acid transaminase 1, BCATI)¥% 55 Fl > f & 3
PR o3 i AT, T 38 i JR U e 4 L %) G R 4R 2%
RE 7 BT A5 TR R 22 P 4 il v 83 (1) B 72 106 it ik 7

H, ACSS2il i LM AL 4L R F H3/HAHH 5530 T 5 i
#:5% [X T (apoptosis antagonizing transcription factor,
AATF) K15 FaslC & (Fas ligand, FasL)¥% 5%, BXz)
AV FasL i, W IE L 455 CD8” T4H M) Fas
SRS V- E IS 418 -8/3 (Caspase-8/3) K [ I, filt
K THMIR T2 B 72 R BE 8 4 1R i3 855 T, Nogo-
B2 1K (Nogo-B receptor, NgBR) 1] i if 7 AKT-
SREBP1(sterol regulatory element-binding protein 1)
{5 SIS T ACSS2KIE, 158 ACSS2H A R HEAR
W= M6 W acetyl-CoARIfE /7. ACSS2iE i 1 5[5
Je2 3 Kl MYCN(MYCN proto-oncogene, BHLH tran-
scription factor) 4% s (i 4 22 BE A0 g A KB

gi EPTR, L ACSS2 AR AR Bl L (i 4L
lactyl-CoAE i, B HIXEN A & A AL BB, K&
AR R RS R I PR AR B 5 R ) e AR
RO HE R SRR PR AR AR B . IX AR R 1 ARG B LE
B AL G — PP 4B AR 4 BL D BE, 0 PEAR i
AR 5 S B A BT ELAE SR TR o T A
1.4 KBS S5HEMLEE

A g AN T A P i R AR
5 RE LIRS s E #2112 DNA. RNAMZAL R
H B L& . DNAF %2 (DNA methyl-
transferases, DNMT)ffE{ S-Jig 1 F il B (S-adenosyl
methionine, SAM);=/E, DNMTZE DNA F AL g 72
PHE WA —J7 S SDNAR R B, 5l
Qett RS2, FEHET T DNAF LS, 5 —
Ji T, FART= IS AMZ AN A Bl 1) PR A48,

®1 SRR EFEFIHDAC/HATHIE]F]
Table 1 Approved and investigational HDAC/HAT inhibitors

el HFR R I PR 6
Category Name Disease Clinical trail
HDAC inhibitor Vorinostat Cutaneous T-cell lymphoma*”! FDA approved
(SAHA)
Romidepsin T-cell lymphoma!**! FDA approved
Belinostat Peripheral T-cell lymphoma!*”! FDA approved
Panobinostat Relapsed or refractory multiple myeloma after immunomodulatory FDA approved
(Farydak) drugs and proteasome inhibitors, combined with bortezomib and
dexamethasone for multiple myeloma patients™”
Givinostat Duchenne muscular dystrophy’ Phase II/111
Abexinostat GBM, renal cell carcinoma, and non-Hodgkin’s lymphoma**! Phase 111
HAT inhibitor Curcumin Liver cancer?” /

HDAC: A& % LI ACHE; HAT: HE A WAL GBM: ST EFIIR . «/2o 1ZAM I TR AREAT i PR 6 ok WY 08 i PR I8 i B, B

b e AR TR TT R B

HDAC: histone deacetylase; HAT: histone acetyltransferase; GBM: glioblastoma. *“/” indicates that no clinical trial has been conducted or the clinical

trial stage has not been explicitly reported for this inhibitor, or it is in the preclinical research stage.



MR e s A B R R B R R P IR T g

255

T R A% B £E 5 1% & i 2(phosphoribosyl pyro-
phosphate synthetase 2, PRPS2)Z: 5 WM 1% IR £ it
PRIGD IR, 1AL D-AZ 0 -5-TR IR 7= 2E S5-I AZ B -0-1-
FREIR . PRPS2 I i Bl i VEAK -5 A 1O 1 X0
HLEIIR S RNA m°AF &AL . — 71, PRPS2i@ 1 2
HENERS G AR, KX B 4 ADPEL GDP 5| K 1)
AR R, BTk B S EPE N, 4R SAMAED)
BRI R B B ATPREN ; 55 —J7 1, PRPS2iERE
B G IR AR R % # 1 2A (methionine
adenosyltransferase 2A, MAT2A), {23t ATPA| HF1
SAMA: i, BET I F R A2 i 5 ) WTAP(WTI
associated protein)/METTL3(methyltransferase 3)/
METTL14(methyltransferase 14){{£if m°AH 34k,
LA it A AN R

Rtz Ab, AR B AT DL i 8 A BAE A
PR E R E O . P4 (reactive oxy-
gen species, ROS) R AR AEIK AN LDHARZ #6407, 31 ik &
DOT IFF 4L IR 3 44 72 i (DOT like histone
lysine methyltransferase, DOT1L)/- 5120 & FAH3 %579
Rtz B8 (H3K79) i HH 24k, AT 0SB S S R A
Witf5 5 IE R, 85 4 P S I T4 10, AR Ak
GBMZH I 438 FEURI I e 1) LA A i)

2 RS 5NESEHSEE

AU 1) D) e O 40 e 22 H 4 AR i 2 ok,
H BS54 AN mT B 42 K 1O,
AU BEE N 2 A BAER . BRS80S A RNA
454 8 H (RNA binding protein, RBP) A5 3% 2541
i, B 515 5 W2 1R %R .
21 REEEIERHEEERS5ESER

ARV it 30 1o % B AR LA T, B
55 Jeg A R A SR IR OGBS S, X AL 2
FS 9 e A AT R AT 5 RV

VR D W T A G % o R DG B g, R T Tl R AR s
1 1 (phosphoglycerate mutase 1, PGAMI)f# {4 3- 2
HR A 2- B R Tk R A LA . PGAMITE I
SR EECAARAR BAE R E B DR HHZ 5 DNA
018 5 LA 47 5 DR A R 1k i 45 G B 5
W (B 2A). PGAMIFLLS o ALEI E A
2(actin alpha 2 smooth muscle, ACTA2)AH H.1E H i it
FUBR RS ), AR I BE 5T R I PGAM L@ i 4h
VAR AT AT TR SRR, 51 R 4 SRR ) A7 A A

LI PGAMI R A% 350 21 N I #5fik A R 4B, 5 y-JUL
B8 [ (actin gamma 1, ACTG1)%5 &2t i Fl iz 2
T BOAR T 2B ML A8 AR i, PGAMILELAG B A 51 e
R AR TSRS ST 7710, (e R, PGAMI
2 PI3K/AK T/ 3130 Y 8 0 5% 2= 2 25 1 (the mamma-
lian mechanistic target of rapamycin, mTOR){5 5 iff
1%, I S HIF-1af7 48 15 A5 507

Vb B -3- 1 2 Ad U (glyceraldehyde-3-phos-
phate dehydrogenase, GAPDH){E &AL N F(E 5 H &k
R . GAPDHMEAL 3-TE IR H il ¥ 2E it D-H
TR 1,3- B, # Ry B BN " HE AL
R R IR E N A A SO U, A B 2
SRR RIG . HEAWPLEOC A T R,
AR A, T U S 1) GAPDH, B R
THEAIEYE, J12R 25 T IRBN A OSBRI A 1) e
71, B R SRR W RRAC M E A AL R Y. GAPDH
AR FEA F MG, TS mesd SOV TS K5 (re-
sponse regulator mes4, Mcsd) [ FLAE FH #5 DA 5
T K 20 B ) AR SPIRZS 5 MAPKAE 5 2 ki AR 1k
AR (E]2B).

22 SR A FICIE % 1 O T g IR H e TR I
(phosphoglycerate dehydrogenase, PHGDH )i i H: ¥
2 i 5 AL 22 AR A B R T RS B R AT 3R
20 TRe. PHGDHAERR =ik, AL 3-WE R H
TR AE B 3-B IR P2 AL U R . PHGDHAE I 4 g
(1) 5 MR IA IR T 1 R o 4 B A DG B A m 9
P, X L4 I I PHGDH A 5 (1 22 2R & AR 7=
A o IR, BEMR 38 G 2 on s R AR R e B AL
B, G5 R A0 B ) =2 22 I E A RE ) 7. PHGDH
(P DIRE 2 PRI S HAE LRI N BN A 7 AR B UIAROG : £E
JH-e 40 s PHGDH AT 5 o7 22 e AR i, L5 IR nd 4%
TR A7 ¥ 2(adenine nucleotide translocase 2, ANT2)
FHEAEH , 1A S 2R AR R -7 G2(mitochondrial
elongation factors G2, mtEFG2)$& F+ 2 R A% BE 471
INRER, TR 1 T IR 52 2 P 3 0 R A I
W7, PHGDH M40 MZ € AL AR E 1 & i EACE 2
fe. WFFTR 4% N PHGDH PAIERR IS 1 N ah &
JJEE R K MYC(MYC proto-oncogene, bHLH transcrip-
tion factor) JFHuE H A% 5%, IRBNEALE + C-X-CHE 7
AR F R4 1(C-X-C motif chemokine ligand 1, CXCL1)
FEA 2 -8(interleukin-8, IL-8)F&ik , i 455 - K
1 6L R e 9 AR S 15 Mk 4 L 7 JH 9 ok 2 98 e
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Fig.2 Metabolic enzymes regulate signaling through protein-protein interactions (image created with BioGDP)
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FJ38, 3(RING finger and WD repeat domain 3, RFWD3)
FIRING?E 25 1 5(RING finger protein 5, RNF5)4)- 7118
i B 4% 5 PHGDHAH B AF I B B ik oz 2R A i,
TSR PHGDHP A #5757, Cullin 4A-RING
E372 £ 3E#207 (Cullin 4A-RING E3 ubiquitin ligase) LA
Cullin 4ANZ 2R, I+ 5 DNASUT 24548 11 1(DNA
damage-binding protein 1, DDB1)%5:4H 73+ [F] ¥4 R E37Z
RIS B (4P N DDB1-CUL4 E372 R i%
BB A1), 12 AW A 3 PHGDH S 14647 182
1% 7 R AAB I IR BN 25 B AT (E120).
ARG 5 (S 5 B 1 B AR L R g
RIS RNARSHRE, TR AR TN 25 . WANG
S UL o R KB R SRS RNA HULC
AE8 B 4245 & LDHAFI A BRI M2 (pyruvate kinase
M2, PKM2), 358 =55 5 s A 4 g i A= K DR 7 52 ik
1(fibroblast growth factor receptor 1, FGFR1)HJAH H.AE
FHFR it SRR AL , i 2 A S B K TR (i it
ARG E . BR T A R ML 4241, LDHA
LS S SR FREEEL S, W FTIESE FGFR BN 5
FLIR I [R) T 2 A EEe AR BRI 41
I I RE AR E R AE B, U N EE S, LDHAR]
B EHE RacK % /N GTPH 1(Rac family small GTPase
1, Rac1)™, LDHA 550 E U Racl-GTP4S &, ilfiid
“Or TSR Y RE IR RS e 4 M B SR EE
NI 32 L e A KR R ) (E12D) o
PKM2AE A HE AR (1 G 4271 o, 2RI AT
181 2 4 B (AR 2 L T R IR LY BT 2E) . 1 4t a5
) EGFREGHERT , 40 4ME 5 U715 T 2(extracel-
lular signal-regulated kinase 2, ERK2) H 245 & H- R
1k PKM2, et PKM25j 1% 512 55 [ oS(importin o5)f)
FHEAEF IR PRM2EL IS B ANRZ™) . fEAZ N, PKM2
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A, VEGFA) R AN ISR 73, e A dE 25 B 1K)
AR R
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] - et S S PR A S B AE S AR E AR AR
MR 2 I B S 15 (3) At )5 A6 - Jd i ok aih
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FAEAL AR 1,6- —BIBKAf  A0E -6-B 1K . FBP1il
o R WA AR 1 H3SRAM L S A e 1A 4 SE
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pha, PPAR )47 [ JIi 117 TR S A0 B R R Rk DR e 570
FBP L& g ELEEAE T i (5 5 % - FBP L@ ik
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532136/ 22 2R (S32/36) 1) 2B FR AL A il NF-« Bk
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53 AU Pl DU BE A HE T ST ) B R
AT F AR ZS 12 0 5 15 5 e 3 Th BE AR 4%
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BEARURE AR P 88 — BRI Al (A R0 A B -
Rkl . KHK-AZp 75 32 A0 S e ) SR 3,
R4k p62(sequestosome 1)~ P2 FL 3- HL AU /(0
JR 5- 58 I 4E B B0HS £  eta(tyrosine 3-monooxygen-
ase/tryptophan 5-monooxygenase activation protein
eta, YWHAH)E{ PKM2, {1 HCCR A= FLIRE %
# sl e 78 D00 S A OO O 45 M B 2R
1(hexokinase domain-containing protein 1, HKDCI)
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{LRB%E A4 F15(RB binding protein 5, histone lysine
methyltransferase complex subunit, RBBP5)3 5 21
TR A R R 3L L R 2A(lysine methyltransferase
2A, KMT2A/MLL) R GG E, (23T 2250 140
R 2 R 2 35 R0 I 4 i e 35 5 7V AT I R S TR
fif 4(pyruvate dehydrogenase kinase 4, PDK4) 1] DL
J% 4. PDHE L aJf- 78 1 15 AL BE R AL DK 5 ) ATP /™ 4=
HORAEAE AL, A RAT SCE R E HL AR 2R S i A ST
filg D Re Y, PDK 41 B IR Ak /N G [ e i I Mo 3
1 2(septin 2, SEPT2)f i fififes 40 ff 2E K%, UDP-
N- 1576 %0 b i £ i R AL B 1 (UDP-N-acetylglucos-
amine pyrophosphorylase 1, UAP1) 4 i i@ it £
WERR AL T4 2 R 5 A 7 3(interferon regulatory factor
3, IRF3)1) 3867 sl fie 12t fifi i 20 ML F) TR TR 3R A5 5
Pl A

AR B B PE S 21 O o AT A SR 24 8 D)
REMIAZ DML — o FHEBRREEMNW . (1) #
A DI RE R 2 FE 4« AUl ] IR A5l Bl R Bl v 12k
HEBWESHEARAER; Q) 7 9% SR EEMN:
A OGS B PR S 2 1, AR B RE S Sead A 4t
S 5 Gk, PROERS et I T i B, (3) AR B B
T SO 1 - DR 20 AR B 520 5 B, 1K
— WL E 2 P A dr I AR A RS R B 2 EH .
2.3 RIFEBIEARNAGAERSSESIEIE

AU T e a8 Ik 2 1 A LA FH R S A1 i
{5 T iEEE 2 Ah, HAE NRNALS &8 L HERNA
AU SRR R T RE, TE52 BRI 2 1 9%
X — WL B R AR A R S AR R,

&AL 1(enolasel, ENO1) & iR A il £ &
RNAZE & DI Re MY 245, ENO L/E RS 42 Hh i
A 2R H Tt TR R ol R s I TR P R 1 W] 3 e Ak, HLAE
AL RS B 45 RNAZE G RE /1. ENOT B 14
ZRNA SR 564 4], TTENO1H &1 &
M AAZ T e R 20X — ik A%, a3t T 2 e /) BRUVE G 48
AR E Zm AR, FEmRNAFE P12 77 H, ENOL
FAZE K T CCRA-NOTH% 5 5 A 1K % 6(CCR4-
NOT transcription complex subunit 6, CNOT6) % 1
5 [ 1(iron regulatory protein 1, IRPI) mRNA[1]5'4E#H
PEIX (5" untranslated region, 5’ UTR), {2 #f/RPI mRNA
Fafit, a3k T I TR P 1-2 R A4 85 1 1 (mitofusin 1, Mfnl)
SRR ERAE T 1Y, A ENO1E B B 1%
mRNAFHPERCR, JHid 454 Yes KL ER 1 1(Yes-associ-
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FLRTE, SR IR B A6 AR DU IR A R AN i 12 JH
RN, FEBE T, ENO145 45 SRY-S % 7
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B B ISZ AR CHL5HY it A(G protein-coupled receptor
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YEFp H IR, TR 2 H e p 2 1o+ 100,

PKM2i£ HEAE 9 RNALS & 4 1 AR B
i 001081 B B, PKM2IE T S A% RIALE &, JF4E
SV G & g i R R /4 2R W 4R B 1 K mRNAF
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AR E | A FUE ) EUEYE . HAh A )
T2 2 SRR, SO IR F % 3 G %
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Y(interferon gamma, IFN-y)FJmRNA - F0151] BB T
PSRN TR D RE M. Sl Hom i 45 S 7E4R 7%
H3K ¥ 1(colony stimulating factor 1, CSF-/) mRNA
43" UTRIPH LE L B 20 S A2 11, fE R B
H, GAPDHYE A RBP, it 5 AE i 4 - 1(fatty acid
synthase 1, FAST) mRNAAH B F 3L RS,
ORI 7 2 IE R R AT 12, 53K R 1 (aconitase
1, ACONMHE 7R 1 A BEAE R IR G b B RZ Lo A -
H2 MAPKF A p38y/difids , it 45 & 2 24 5%
A ER T 8(mitogen-activated protein kinase kinase
kinase 8, MAP3KS/TPL2)) 3" UTRK F#AKHE 5 41 g o
TPL2AE I RIE /K P1,

Zi LTk, AR E N RNAGE S AN T —
AN PR TITAR 55 (0 3% Jm I P M 2%, AR P 32 22
AFELLNJUATTIE . (1) BEEE G mRNA: 85200
FORGE MR BRI IR 0%, RS W TR s e B i R 1
B (2) ZAESRES RNAT S - TR A= 0 = i5i 5
AU L, shAmNAMIRE; Q) BEZHES: F
NTEE, BERERE. {9k 5B RE
B o X BT A R 3 R 1 0 A g AR
ZIIIRERIAAL, RN T REFARRE AU -RNA”
HAE A FI AT BE i 16 7 T R 43 F) SR 77 1+ o

3 RIGESIRITARE S IhRe = B AR

PSR TR A3 1 P2 S5 R e A T LA LB
ARUBRAS B o RFAE 1 S A | AR AR 2%
ST, 16 T G BB RO B b R AR T L0
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A: PDHEla promotes lung cancer immune tolerance by subcellular translocation and depressing NF-kB; B: HK2 drives glioblastoma immune evasion

by degrading IxBa and activating NF-«B signaling.
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Fig.3 Metabolic enzymes regulate tumor microenvironment through noncanonical functions (image created with BioGDP)
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AL HAR 3 PD-L 13RI, AT A 2 4 22 52 Jo 88 1) e 92
RN E3B),

UG ik e it AR i Thae, D%
SR 95 7 A S S B AR R T o A R T A IR
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transducer and activator of transcription 1, STAT1 )i i,
i C-CHJF LR F-BL A4 5(C-C motif chemokine
ligand 5, CCLS)567KF-, LIRS H 2 ib i 77 s\HH 35
WA PETA RS, AT B RS E 501,
0 B2 B Ak SR IR 1) acetyl-Co A i 2 5 NF-xB#% 3¢
T E AW A p6S(H RELAZRTY )i LKA
BB A R CD47I =%, 35K 5) GBMIZ 22 A1
G B8 U200, I TR P4 r f) V. HY 26 Y S P Rl S
fi 2[methylenetetrahydrofolate dehydrogenase (NADP*
dependent) 2, methenyltetrahydrofolate cyclohydrolase,
MTHFD2 ARSI =) PR 5°- — 8L -N- LI
FL 78] %] B (uridine diphosphate-N-acetylglucosamine,
UDP-GleNAc) & AR QM Zhae U7, Jlid fiesdt MYCH
O-3E % B-N- LI 28 H1 % BE (O-GleN Ac) Bl 3L Ak (2 1fii
A PD-LIRYH: 5335, S BUBMR R R & A 4
PEREIR 1, X — R E R 7R T MTHFD2{E4H il 5
i AR A 2 T I AR AR E

AR L WA Dy 40 B (B 45 48, I Fh iR R 4%
76 2 0 J R PR 15 1200, PROMI2 e i LT L Hh )
RO, —J7 T, SRR I Ak PKM242
SUMO(SUMOylation) {21 5 , it C-CI 7tk
[A ¥4 1(C-C motif chemokine ligand 1, CCL1)/C-C
FE 7 IR T 52 44 8(C-C motif chemokine receptor
8, CCR)Hl i a8t i 77 X B A% 4 g S L, 217 5 3
STAT3B R S e s B AR, JXsh ELMR 40 i 4k 121
55— J7 L FESRESRAT T, NSCLCHH MY £ 73 W L4
PKM2 [ M UAA o 3X 6 A A A3 Ji 8 AH O Jil £ 44t 4
Jf(cancer associated fibroblasts, CAFs)ft Ui, BEH Al
JIGUEA 55 5 1) ROS Sk JER AR, i3t CAFsHIAC S
TE L, e 2SI R R AT T 251

27 bk, AR ERE I 2 o AR AR Z)
SR R S B oA, R B AR LT 5 . (1)
REE S5 S R IENES 2T, @il e
e IR B gL (0 5T B R E S A R R 3R A 5 (2)
V2 5E o7 e 4 - AR BT R H A E i, 3R A5
T2 NF-kBEF RS 5@ B BT DhAg ; (3) AN A
TR AR I ;ARG IE I S b A A 4 L [R)  s , Si
IUORT B 5 AT B R S o M A A B g R 5 Th RE T
XELRINAMIR 7R 1 MR S ERE IR BT, BE R
TN R ACHBER AR ST RE, TR A SRR
PN , 5 S TR, A8 v R
Btk S BT T 2R 4B IR AR YT SR

4 KRiGEEITIEE B INEEETT I

BT ART BRI 22 S0 Th Re 1) BB RE In) SREmE , B
R I T IR R mE A PUHEAER . dE2 Ml
W Vi B 40 E B BT S R T RE RTINS
AT EOR B FLEE A AR 1 DA PR ER %

FTRHCEHBER AR MDD RERIRN T, JT K RE
AR S A ) FL AR L AH ELA R FH ST 7, Rk
N e IR R TR 245 5 P A% 1 B VR 97 S U3, ZE il i
JETH, FH PGAMI I LA A4 HI I HK B99, 7T LA
556 PGAMI AR 5, A7 U L Janusii
2(Janus kinase 2, JAK2)FISTAT3 2 [H] FIAH EAE H, A2
T e 4 T X 55— A 5 =AX EGF RIS 28l B!
#1751 (EGFR tyrosine kinase inhibitors, EGFR-TKI)/Ei#%
B JE AN BLG B JE (R 3RAGVEIN 245 134, ik — DRI SR SE,
HK B9 it 1 28 4 i 5 4 ] PGAM 1 F R A2k Je
H5 oa-FIE WIS E 1 1(actin alpha 1, skeletal muscle,
ACTADIAH EAER, R #E ) HACHHE AT SRS
e, St 5ol NSCLCI 245 (R XUE AL 139, F2T- LA
3% LDHA M Rac 1AH BLAE A 78 ik eg 2 Jie v i ik &
LIUZEB3% 5 LDHA [ NADH 3% 4+ 4 1 77 FX 1A
Rac 11| 71 NSC23766 58,15y ] S Jioed , (H — 2%
K FHY R FR 3O L S 5 (0 I [ SR 4 A E o Bk T /Ny
THMEIFIAL, S H A PR S UG R .
an, — Mg AL <1 T 4G 5% PHGDHAT DDB1-CUL4
E3VZ 2GRN Z A AR EAER, AT fil’k PHGDH
(RIZ AR, S 25 ) 45 B s 10 10 Rqpli,
ZHANGEE VR FH AL IREFOR | s KA IR 2
RFWD3-PHGDHAH . F iR S A 075, 14054
55 A K5 A5 FH E B PREVR T Hh R IR 2 2 1) 1
PUMBIER . BeAh, IRt R B R L s . A
W BT 7 — A e 2k, H A0 B R R 5
SFE[K] 1/2(insulin induced gene 1/2, Insigl/2) 25—
X . ZZMKiEE e g 1 25 A AKTHRERR {6 1) B IR I
i TR T R PR I8 1 (phosphoenolpyruvate carboxykinase
1, PCK1), FELWrPCK1 5 Insigl/2 (A8 HAE FH , A4
IR T R R RO, f 2k S R A=
KHIRCERN X LR T BRI [RIEBH, DA B 2
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R e 2 IR 21, J& SRS T U AR T RE . 10
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PRI R IR FEEIISIF . 9, B8 HKDC1 ) 8
AR 1 1T 3 HKE 14 ] LARH Bt RBBPS IR A4 2F 1T
P AN ol A R 2R R S A
ALDOATE Tyr174/302/32857 & IR AL , 5 253 1
FARFE DR Y, PIEER AR AR I — AL S-&
It %% #2 I (dihydrolipoamide S-acetyltransferase, DLAT)
ke 336 3 A ) S S B R i 2 I 2 (branched chain
amino acid transaminase 2, BCAT2) ¥ 14 K [R] B2 411
SLRIR o AR, J8 I B ) DLAT A 22 % )
REAH AT Rg i SRt 1R Bk L,

FEF RO E A = 1, PR ALBT . Zekiff
IFi) 200 i P A g S 8 e o O il o SR . B
TR I, ALDOA IR i (o 4 i H: K20047 i (132 3%
b, 2SR AT IR B RELAY G s I it Ik i ik Jg . 3@
1L [ ALDOAVZ AL AE A IE 1%, 7T LUA 442
pOS NI 5 AT T 250 B [F] e ROR B A
1% 5 57 10 JH 2 18 1% SR W U (phosphofructokinase,
liver type, PFKL) Thr562%% 311t 45 & H i H M 4
PR P41 1) 750 20 Kt~ ) B 45 R A3 mm HL 24 %, T
RARTT M2 K PFKL-552-572-R8 W] LUk D8 i % >k
Hi 3 PRI AR FH A

FE 33E — 2 40 & 1) T3 A6 B -RNAAH BLAE
H 45k, W 7% K B PHGDHER AR D e 41, 3 4
N RNAZE & 8 I8 € mRNA (G 3E i o e
CHENG&E Mg R BT % 5 PHGDHIX RNA S &
SERIIR, B BT RN A H 52 1% 7R S 1 # 1v)
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BERE . WEFTUER], HPD RJ{FE Y RBPA it R 2t 52 ; 38
1 BH W FE RNAZE#4)3E, AR L RNAZE S DhRE, fiE
A A R & e S 25 M R M. 2 R IR
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5 REERE

AR SC R G sad T AR U E bR 8 o g AR 2
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e D I A AR A 5 P 240 T e TR B AR it
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AR i ) T B 22 1 1 5 5 0 240 i e o7 % DI AR
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