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Molecular Regulatory Mechanisms Governing Totipotent Embryo Development

GUO Jiawei’, XIE Yuzhuo', FU Xudong*
(Liangzhu Laboratory, Zhejiang University, Hangzhou 310000, China)

Abstract Totipotency refers to the ability of a cell to generate all cell types of the organism and develop
into a complete individual. In mice, the zygote and 2-cell embryos are considered strictly totipotent, whereas in
humans, totipotency is present in embryos before the 8-cell stage. The totipotent embryo development is governed
by a multidimensional regulatory network and is significantly influenced by intrinsic and extrinsic environmental

factors. A deeper understanding of the mechanisms underlying totipotent embryo development, optimization of in

ek H 393: 2025-09-24 H:3% H W1 2025-11-13

5 ARG HE 5 2022YFC2702300) FIE 5 [ SR} 22 G i 100 H (HEHE S 32470840, 32270852) 5% W iR

LR R

HEEVEE . Tel: 0571-88790966, E-mail: xudongfu@zju.edu.cn

Received: September 24, 2025 Accepted: November 13, 2025

This work was supported by the National Key R&D Program of China (Grant No.2022YFC2702300), and the General Program of the National Natural Science
Foundation of China (Grant No.32470840, 32270852)

“These authors contributed equally to this work

*Corresponding author. Tel: +86-571-88790966, E-mail: xudongfu@zju.edu.cn


https://cstr.cn/32200.14.cjcb.2026.02.0003

268

SR

vitro models and research technologies, and evaluation of risk factors affecting totipotent potential could further ad-

vance assisted reproductive technologies and the translational application of totipotent cells. This review provides

a concise summary of recent progress in the core regulatory mechanisms, risk factors, and research technologies of

totipotent embryo development, including contributions from this laboratory.
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Fig.1 Metabolic regulation of mouse totipotent embryo development
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Tagmentation). ATAC-seq(Assay for Transposase Ac-
cessible Chromatin with high-throughput sequencing)
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BERY (4 2CLCs) B 20 % s 4 . Gt BB I 45 4L
i, IR A A SCREF PR R T A EIF B ek
Y1 2 TR () B SR TR T N 4% L B A T TR R BB DA R
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