LncRNA KCNQ1OT1靶向miR-148a-3p对弥漫大B 细胞淋巴瘤细胞增殖、侵袭、多柔比星耐药的影响

顾 喆 赟 陶健 王 铃* (江苏省南通市第一人民医院血液内科, 南通 226000)

摘要 该文旨在探讨长链非编码RNA KCNQ10T1调节微小RNA(miR)-148a-3p对弥漫大B 细胞淋巴瘤(DLBCL)细胞增殖、侵袭、多柔比星(DOX)耐药的影响。实时荧光定量聚合酶链反应 (qRT-PCR)检测DLBCL组织及细胞(OCI-LY1)中LncRNA KCNQ1OT1和miR-148a-3p水平;将OCI-Ly1细胞分为对照组(Ctrl)、sh-NC组、sh-K1组、sh-K1+miR-In-NC组、sh-K1+miR-148a-3p-In组; EdU法和细胞克隆形成实验检测各组OCI-Ly1细胞增殖情况; Transwell实验检测细胞侵袭情况; Western blot检测OCI-Ly1细胞中MMP-2、MMP-9和Ki67蛋白表达水平;筛选DOX耐药细胞OCI-Ly1/DOX20,并采用CCK-8法测定各组细胞存活率;双荧光素酶实验测定miR-148a-3p与LncRNA KCNQ10T1的靶向关系。DLBCL组织或OCI-LY1细胞中LncRNA KCNQ10T1水平较高, miR-148a-3p水平较低(P<0.05); LncRNA KCNQ10T1沉默后 OCI-LY1细胞 EdU阳性率、集落形成数、细胞 侵袭数、LncRNA KCNQ10T1水平以及MMP-2、MMP-9和Ki67蛋白表达水平降低, miR-148a-3p 水平升高(P<0.05);进一步抑制miR-148a-3p表达后细胞EdU阳性率、集落形成数、细胞侵袭数、 LncRNA KCNQ10T1水平以及MMP-2、MMP-9和Ki67蛋白表达水平升高,miR-148a-3p水平降低 (P<0.05)。在DOX浓度为10~80 nmol/L时, KCNQ1OT1沉默后OCI-Ly1/DOX20细胞存活率降低 (P<0.05), 进一步抑制miR-148a-3p表达后细胞存活率升高(P<0.05)。KCNQ10T1与miR-148a-3p间 存在靶向关系(P<0.05)。LncRNA KCNQ1OT1下调可能通过调控miR-148a-3p, 抑制人DLBCL细胞 增殖和侵袭,减弱细胞DOX耐药性。

关键词 长链非编码RNA KCNQ1OT1; 微小RNA-148a-3p; 弥漫大B细胞淋巴瘤; 多柔比星; 耐药

Impacts of LncRNA KCNQ1OT1 on Proliferation, Invasion, and Doxorubicin Resistance of Diffuse Large B-Cell Lymphoma Cells by Targeting miR-148a-3p

GU Zheyun, TAO Jian, WANG Ling*

(Department of Hematology, First People's Hospital of Nantong, Nantong 226000, China)

Abstract This study aims to investigate the impacts of LncRNA KCNQ1OT1 on proliferation, invasion, and DOX (doxorubicin) resistance of DLBCL (diffuse large B-cell lymphoma) cells by regulating miR (microRNA)-148a-3p. qRT-PCR (quantitative real-time polymerase chain reaction) was used to measure the levels

收稿日期: 2024-12-20 接受日期: 2025-04-17

南通大学临床医学专项科研基金(批准号: 2023JY001)资助的课题

^{*}通信作者。Tel: 18252508184, E-mail: sv18il@163.com

Received: December 20, 2024 Accepted: April 17, 2025

This work was supported by the Special Research Fund Project of Clinical Medicine of Nantong University (Grant No.2023JY001)

^{*}Corresponding author. Tel: +86-18252508184, E-mail: sv18il@163.com

of LncRNA KCNQ1OT1 and miR-148a-3p in DLBCL tissues and OCI-Ly1 cells. OCI-Ly1 cells were assigned into Ctrl (control) group, sh-NC group, sh-K1 group, sh-K1+miR-In-NC group, and sh-K1+miR-148a-3p-In group. EdU method and cell clone formation assay were used to detect the proliferation of OCI-Ly1 cells in each group. Transwell experiment was used to detect cell invasion. Western blot was used to detect the expression levels of MMP-2, MMP-9, and Ki67 proteins in OCI-Ly1 cells. DOX resistant cells OCI-Ly1/DOX20 were screened, and CCK-8 method was used to determine the survival rate of cells in each group. Dual luciferase assay was used to determine the targeting relationship between miR-148a-3p and LncRNA KCNQ10T1. LncRNA KCNQ10T1 in DLBCL tissue or OCI-LY1 cells was higher, and miR-148a-3p was lower (P < 0.05). After LncRNA KCNQ10T1 knockdown, the EdU positivity rate, colony formation number, cell invasion number, LncRNA KCNQ1OT1 level, MMP-2, MMP-9, and Ki67 protein expression levels of OCI-LY1 cells in the sh-K1 group were prominently lower, while miR-148a-3p were prominently higher (P < 0.05). After further inhibition of miR-148a-3p expression, the EdU positivity rate, colony formation number, cell invasion number, LncRNA KCNQ10T1 level, MMP-2, MMP-9, and Ki67 protein expression levels of OCI-LY1 cells in the sh-K1+miR-148a-3p-In group were prominently higher, while miR-148a-3p were prominently lower (P < 0.05). When the DOX concentration was between 10-80 nmol/L, the survival rate of OCI-Ly1/DOX20 cells in the sh-K1 group was prominently lower after LncRNA KCNQ1OT1 knockdown, and the survival rate of OCI-Ly1/DOX20 cells in the sh-K1+miR-148a-3p-In group was prominently higher after further inhibition of miR-148a-3p expression (P < 0.05). There was a targeting relationship between KCNQ10T1 and miR-148a-3p (P < 0.05). The downregulation of LncRNA KCNQ10T1 may inhibit the proliferation and invasion of human DLBCL cells and weaken cell DOX resistance by regulating miR-148a-3p.

Keywords long non-coding RNA KCNQ1OT1; microRNA-148a-3p; diffuse large B-cell lymphoma; doxorubicin; drug resistance

弥漫性大B细胞淋巴瘤(diffuse large B-cell lymphoma, DLBCL)是一组异质性淋巴瘤,多数患者可 通过多柔比星(doxorubicin, DOX)、泼尼松、长春新 碱等化疗实现长期缓解,但部分复发患者可能出现 耐药性且预后较差,因此,有必要探索新的DLBCL 治疗方案^[1]。

长链非编码RNA(long non-coding, LncRNA)是 一种非编码RNA,在多种癌症中差异表达,能通过 与微小RNA(microRNA, miRNA)相互作用调控细胞 生物学行为^[2],其中LncRNA KCNQ1OT1在多种癌 症中高表达,与癌症的发病机制相关^[3]。有研究证 明LncRNA KCNQ1OT1可以靶向miR-148a-3p促进 肝细胞癌的进展^[4]。而miR-148a-3p能维持未成熟B 细胞存活,损害B细胞耐受性及B细胞中ERK信号转 导从而参与DLBCL致病机制^[5]。因此,推测LncRNA KCNQ1OT1可能靶向miR-148a-3p参与DLBCL发 展过程,但尚待探索。本研究分析LncRNA KC-NQ1OT1与miR-148a-3p对DLBCL细胞增殖、侵袭、 DOX耐药的影响,为增加DLBCL的治疗靶点提供理 论依据。

1 材料与方法

1.1 组织和细胞

收集于2023年4月至2024年4月期间江苏省南 通市第一人民医院收治的28例DLBCL患者术中切 除的DLBCL淋巴结和邻近正常淋巴结组织,生理盐 水清洗后于-80°C冷冻保存。本研究经本院伦理委 员会批准(2023-0067),且所有DLBCL患者或其家属 均签署了知情同意书。

人DLBCL细胞OCI-Ly1细胞系和正常B淋巴细胞GM12878细胞系购自中国科学院细胞库。

1.2 主要试剂

LncRNA KCNQ1OT1干扰质粒(sh-KC-NQ1OT1)及对照(sh-NC)、miR-148a-3p抑制剂 (miR-148a-3p-In)及对照(miR-In-NC)、miR-148a-3p模拟物(miR-148a-3p mimic)及对照(miR-NC)、 KCNQ1OT1-野生型(KCNQ1OT1-WT)及其突变型 (KCNQ1OT1-WUT)质粒均由广州云舟生物科技 有限公司构建合成; DOX(HY-15142)、兔源一抗 GAPDH(HY-P80137)、基质金属蛋白酶-2(matrix metalloproteinases-2, MMP-2)(HY-P80509)、MMP- 9(HY-P80425)、Ki-67(HY-P81234)、CCK-8试剂盒 (HY-K0301)和双荧光素酶试剂盒(HY-K1013)购自美 国 MedChemExpress公司; TRizol试剂(R21086)、5-乙炔基-2'-脱氧尿苷(5-ethynyl-2'-deoxyuridine, EdU) 细胞增殖检测试剂盒(R32174)、DAPI试剂(S19119) 和结晶紫试剂(V34387)购自上海源叶生物科技有限 公司; 羊抗兔二抗(ab6721)购自英国Abcam公司。

1.3 细胞培养及分组

OCI-Ly1细胞和GM12878细胞在含1%青-链霉素、10%胎牛血清和90% IMDM的培养基中培养,培养皿保存于37°C、5% CO₂的细胞培养箱中。将OCI-Ly1细胞分为对照组(Ctrl)、sh-NC组、sh-K1 组、sh-K1+miR-In-NC组、sh-K1+miR-148a-3p-In组; Ctrl组不作任何处理,其余各组转染相应质粒,转染 后细胞需培养48 h后进行后续实验^[4]。

1.4 qRT-PCR检测组织和细胞中mRNA水平

收集研磨后的DLBCL和正常淋巴结组织,以及OCI-LY1细胞和GM12878细胞,加入TRizol试剂提取RNA,并将其逆转录为cDNA;使用定量酶进行qPCR扩增;引物序列:LncRNA KCNQ1OT1,上游为5'-GCA AGC CTC AGC ATA CAC AA-3',下游为5'-GGC TGT GTT GCT CTC TTT CC-3';miR-148a-3p,上游为5'-GTG CAG GGT CCG AGG T-3';GAPDH,上游为5'-CTC GCT CAG GGT CCG AGG T-3';GAPDH,上游为5'-TGG TCC AGG GGT CTT ACT CC-3', U6,上游为5'-TGG TCC AGG GGT CTT ACT CC-3', U6,上游为5'-CTC GCT TCG GCA GCA CA-3',下游为5'-AACGCT TCA CGA ATT TGC GT-3'。以GAPDH、U6为内参,按照2-^AACt法计算LncRNA KCNQ1OT1和miR-148a-3p相对表达量。

1.5 EdU染色法检测细胞增殖

将OCI-Ly1细胞接种于96孔板中,细胞贴壁后 按照分组进行转染;用10 μg/mL的EdU染色剂处理, 使用4%多聚甲醛室温固定15 min后,用0.3% Triton X-100室温通透10 min,加入Click反应液室温避光反 应30 min;细胞核使用DAPI进行染色后,在荧光显微 镜下观察并拍照。

1.6 细胞克隆形成实验评估细胞集落形成能力

将500个OCI-Ly1细胞接种于6孔板中,细胞贴 壁后按照分组进行转染;培养14天后,进行4%多聚 甲醛室温固定20 min,并使用0.1%结晶紫溶液室温 染色30 min,对细胞集落数量进行计数。

1.7 Transwell实验检测细胞侵袭

将按照分组转染后的OCI-Ly1细胞接种于涂有 基质凝胶的Transwell上室中培养24 h;将下室的细 胞用结晶紫染色并观察、拍照,使用ImageJ对每孔 中细胞数进行计数。

1.8 Western blot检测蛋白表达

将OCI-Ly1细胞接种于6孔板中,细胞贴壁后按 照分组进行转染;将细胞置于RIPA缓冲液中裂解后, 使用BCA试剂盒测定蛋白浓度;使用SDS-PAGE将 蛋白分离并转移到硝化纤维素膜上;室温封闭膜2h, 将一抗(MMP-2、MMP-9和Ki67,1:1000)使用TBST 缓冲液稀释并放入膜在4°C孵育过夜;室温将膜与 二抗(1:5000)孵育1h,使用凝胶成像系统监测蛋白 信号,记录灰度值,通过ImageJ软件定量,计算各蛋 白相对表达水平。

1.9 CCK-8法检测耐药细胞IC50

使用0~40 nmol/L的DOX逐步筛选出耐药细胞,标记为OCI-Ly1/DOX20细胞^[6];将OCI-Ly1/DOX20 细胞接种于96孔板中,细胞贴壁后将细胞按1.3分组并转染相应质粒,在细胞中加入不同浓度的DOX培养24 h;每孔中加入10% CCK-8试剂,培养4 h;测定波长为450 nm处的吸光度(D)值。

1.10 双荧光素酶检测分子靶向关系

合成miR-148a-3p mimic、miR-NC、KCNQ1OT1-WUT和KCNQ1OT1-WT质粒,分别将miR-NC或miR-148a-3p mimic与KCNQ1OT1-WT或KCNQ1OT1-WUT 质粒转染至OCI-Ly1细胞中培养48 h;将细胞进行裂 解后,取裂解液进行双荧光素酶报告检测,按照试剂 盒说明书进行操作,比较荧光素酶活性。

1.11 统计学分析

数据以平均值 ±标准差 (\bar{x} ±s)表示;使用 Graphpad Prism 6软件进行统计分析;采用 t检验、单因素 方差分析和 Tukey's检验比较数据间差异; P<0.05, 说明差异具有统计学意义。

2 结果

2.1 DLBCL与正常淋巴结组织和细胞中LncRNA KCNQ1OT1和miR-148a-3p水平

与正常淋巴结组织或GM12878细胞相比, DLBCL组织或OCI-LY1细胞中LncRNA KCNQ1OT1 水平显著增加(P<0.05), miR-148a-3p水平显著减少 (P<0.05), 如表1。

2.2 各组OCI-Ly1细胞中LncRNA KCNQ1OT1 和miR-148a-3p水平的比较

与sh-NC组相比, sh-K1组OCI-Ly1细胞中LncRNA KCNQ1OT1水平显著降低(P<0.05), miR-148a-3p水平显著升高(P<0.05); 与sh-K1+miR-In-NC组相比, sh-K1+miR-148a-3p-In组LncRNA KCNQ1OT1水平显著升高(P<0.05), miR-148a-3p水 平显著降低(P<0.05), 如图1。

2.3 各组OCI-Ly1细胞增殖能力的比较

与sh-NC组相比, sh-K1组EdU阳性率显著降低 (P<0.05); 与sh-K1+miR-In-NC组相比, sh-K1+miR-148a-3p-In组EdU阳性率显著升高(P<0.05), 如图2。

2.4 各组OCI-Ly1细胞集落形成能力的比较

与sh-NC组相比, sh-K1组OCI-Ly1细胞集落形成数显著减少(P<0.05); 与sh-K1+miR-In-NC组相比, sh-K1+miR-148a-3p-In组集落形成数显著增加(P<0.05), 如图3。

2.5 各组OCI-Ly1细胞侵袭能力的比较

与sh-NC组相比, sh-K1组OCI-Ly1细胞侵袭数显著减少(P<0.05); 与sh-K1+miR-In-NC组相比, sh-K1+miR-148a-3p-In组细胞侵袭数显著增加

```
(P<0.05), 如图4。
```

2.6 各组 OCI-Ly1 细胞中 MMP-2、MMP-9和 Ki67蛋白表达的比较

与sh-NC组相比, sh-K1组OCI-Ly1细胞中MMP-2、MMP-9和Ki67蛋白表达水平显著降低(P<0.05); 与sh-K1+miR-In-NC组相比, sh-K1+miR-148a-3p-In 组MMP-2、MMP-9和Ki67蛋白表达水平显著升高 (P<0.05), 如图5。

2.7 各组OCI-Ly1/DOX20细胞耐药性的比较

在DOX浓度为10~80 nmol/L时,与sh-NC组相 比,sh-K1组OCI-Ly1/DOX20细胞存活率显著降低 (*P*<0.05),OCI-Ly1/DOX20细胞耐药性显著降低;与 sh-K1+miR-In-NC组相比,sh-K1+miR-148a-3p-In组 细胞存活率显著升高(*P*<0.05),细胞耐药性显著升 高,如表2。

2.8 双荧光素酶报告基因检测miR-148a-3p与LncRNA KCNQ1OT1之间的联系

预测miR-148a-3p与LncRNA KCNQ1OT1之间 的结合位点结果如图6;与KCNQ1OT1-WT和miR-NC共转染组相比,KCNQ1OT1-WT和miR-148a-3p mimic共转染组细胞中荧光素酶活性显著降低

表1 qRT-PCR检测LncRNA KCNQ1OT1和miR-148a-3p在DLBCL及正常淋巴结组织/细胞中的表达水平 Table 1 qRT-PCR analysis of LncRNA KCNQ1OT1 and miR-148a-3p expression levels in DLBCL and normal lymph node tissues/cells

组别 Group	LncRNA KCNQ10T1	miR-148a-3p	
Gloup			
Normal lymph node tissue	1.00±0.13	$1.00{\pm}0.08$	
DLBCL tissue	2.17±0.42*	0.69±0.15*	
GM12878 cells	1.00±0.15	1.00 ± 0.07	
OCI-LY1 cells	2.85±0.51*	0.57±0.12*	

x±s; *n*=6; **P*<0.05, 与正常淋巴结组织或GM12878细胞相比。

 $\overline{x}\pm s$; n=6; *P<0.05 compared with normal lymph node tissue or GM12878 cells.

n=6; *P<0.05, 与对照组相比; *P<0.05, 与sh-NC组相比; *P<0.05, 与sh-K1+miR-In-NC组相比。

n=6; *P<0.05 compared with Ctrl group; *P<0.05 compared with sh-NC group; *P<0.05 compared with sh-K1+miR-In-NC group.

图1 每组OCI-Ly1细胞中LncRNA KCNQ1OT1和miR-148a-3p水平的比较

Fig.1 Comparison of LncRNA KCNQ1OT1 and miR-148a-3p levels in OCI-Ly1 cells in each group

n=6; *P<0.05, 与对照组相比; *P<0.05, 与sh-NC组相比; *P<0.05, 与sh-K1+miR-In-NC组相比。 n=6; *P<0.05 compared with Ctrl group; *P<0.05 compared with sh-NC group; *P<0.05 compared with sh-K1+miR-In-NC group. 图2 EdU法检测OCI-Ly1细胞的增殖

(P<0.05), 如表3。

3 讨论

DLBCL是常见的非霍奇金淋巴瘤类型,发病率 随年龄增长而增加,且多数患者会出现难治性或复 发DLBCL,导致较高耐药性和不良预后,因此探究 DLBCL的发生机制对其治疗方案的发展具有重要 作用^[7]。

有研究表明, LncRNA可促进 DLBCL细胞的增殖、迁移、侵袭,并增强其对化疗药物的耐药性,进而驱动肿瘤的恶性进展,可作为 DLBCL诊断、预后和治疗的潜在靶点^[8]。例如 LncRNA CHROMR、LncRNA NEAT1、LncRNA SNHG5等在 DLBCL组

织和细胞中高表达,可以促进DLBCL细胞增殖、侵袭、迁移、淋巴瘤形成,并导致利妥昔单抗耐药,而抑制上述LncRNA的表达对于DLBCL疾病模型发挥较好的治疗作用^[9-10]。DLBCL患者血清LncRNA KCNQ1OT1水平升高,与患者肿瘤大小、分期、化疗耐药性及患者预后相关,其高表达通过提示患者预后较差^[11]。这与本研究相似,本研究发现DLBCL组织或OCI-LY1细胞中LncRNA KCNQ1OT1水平增加;抑制LncRNA KCNQ1OT1后,OCI-LY1细胞EdU阳性率、集落形成数、细胞侵袭数、LncRNA KC-NQ1OT1水平以及MMP-2、MMP-9和Ki67蛋白表达水平降低,说明下调LncRNA KCNQ1OT1可以抑制DLBCL细胞增殖和侵袭。另外本研究利用DOX建

n=6; *P<0.05, 与对照组相比; *P<0.05, 与sh-NC组相比; *P<0.05, 与sh-K1+miR-In-NC组相比。

n=6; *P<0.05 compared with Ctrl group; *P<0.05 compared with sh-NC group; *P<0.05 compared with sh-K1+miR-In-NC group.

图3 用于评估OCI-Ly1细胞集落形成能力的细胞克隆形成实验

Fig.3 Cell clonogenesis assay to evaluate the colony-forming ability of OCI-Ly1 cells

n=6; *P<0.05, 与对照组相比; *P<0.05, 与sh-NC组相比; *P<0.05, 与sh-K1+miR-In-NC组相比。

n=6; *P<0.05 compared with Ctrl group; *P<0.05 compared with sh-NC group; *P<0.05 compared with sh-K1+miR-In-NC group.

图4 通过Transwell实验确定各组OCI-Ly1细胞的侵袭性

Fig.4 The invasion of OCI-Ly1 cells in each group was determined by Transwell assay

A: 对照组; B: sh-NC组; C: sh-K1组; D: sh-K1+miR-In-NC组; E: sh-K1+miR-148a-3p-In组。n=6; *P<0.05, 与对照组相比; *P<0.05, 与sh-NC组相比; #P<0.05,与sh-K1+miR-In-NC相比。

A: Ctrl group; B: sh-NC group; C: sh-K1 group; D: sh-K1+miR-In-NC group; E: sh-K1+miR-148a-3p-In group. n=6; *P<0.05 compared with Ctrl group; $^{\&}P < 0.05$ compared with sh-NC group; $^{\#}P < 0.05$ compared with sh-K1+miR-In-NC group.

图5 OCI-Ly1细胞中MMP-2、MMP-9和Ki67蛋白表达的Western blot分析 Fig.5 Western blot analysis of MMP-2, MMP-9 and Ki67 protein expression in OCI-Ly1 cells

Table 2 Comparison of survival rate of OCI-Ly1/DOX20 cells in each group					
DOX concentration	Cell viability /%				
$/nmol \cdot L^{-1}$	sh-NC	sh-K1	sh-K1+miR-In-NC	sh-K1+miR-148a-3p-In	
0	98.63±12.57	97.38±13.61	96.27±13.93	96.09±12.82	
5	97.19±12.41	95.73±11.92	94.81±12.24	94.97±14.35	
10	96.72±11.36	72.14±9.52*	70.65±10.16*	95.36±11.03 ^{&#</sup></td></tr><tr><td>20</td><td>93.68±12.95</td><td>69.67±10.08*</td><td>66.36±11.72*</td><td>90.53±10.91<sup>&#</sup></td></tr><tr><td>40</td><td>90.24±12.19</td><td>65.32±9.85*</td><td>65.32±9.85*</td><td>88.14±10.27<sup>&#</sup></td></tr><tr><td>80</td><td>85.16±10.73</td><td>54.29±9.27*</td><td>54.29±9.27*</td><td>83.25±11.14<sup>&#</sup></td></tr></tbody></table>}	

表? 冬组OCLLy1/DOX20细胞友活率比较

x±s; n=6; *P<0.05, 与sh-NC相比; *P<0.05, 与sh-K1组相比; *P<0.05, 与sh-K1+miR-In-NC组相比。

 $\bar{x}\pm s$; n=6; *P<0.05 compared with sh-NC group; *P<0.05 compared with sh-K1 group; *P<0.05 compared with sh-K1+miR-In-NC group.

立DLBCL耐药细胞株,结果显示干扰OCI-Ly1/DOX20 细胞中LncRNA KCNQ1OT1后,细胞存活率显著低 于sh-NC组,表明下调LncRNA KCNQ10T1能减弱

DLBCL细胞对DOX的耐药性。

miRNA能通过在转录后水平与miRNA分子 相互作用调节基因表达,已有研究发现,其能参与

```
miR-148a-3p
                 3'-UGUUUCAAGACAUCACGUGACU-5'
                 5'-CCCUAUACCUAU
LncRNA KCNQ10T1
                                      GCACUGA-3
                 5'-CGCUUUACGAAA-CACGUGACU-3'
```

LncRNA KCNQ10T1-MUT

图6 miR-148a-3p和LncRNA KCNQ1OT1 3'-UTR之间的预测结合位点 Fig.6 Predicted binding sites between miR-148a-3p and LncRNA KCNQ1OT1 3'-UTR

表3 OCI-Ly1细胞中相对荧光素酶活性的比较 Table 3 Comparison of relative luciferase activity in OCI-Ly1 cells

荧光素酶活性	mil NC	miR-148a-3p
Luciferase activity	IIIIK-INC	
KCNQ10T1-WT	1.03±0.15	0.42±0.11*
KCNQ10T1-MUT	0.99±0.12	1.04±0.14

x±s; n=6: *P<0.05. 与miR-NC组相比。

 $\overline{x}\pm s$; n=6; *P<0.05 compared with miR-NC group.

DLBCL发生和发展过程,可以作为DLBCL的强大 诊断和预后工具^[12],如miR-525-5p、miR-155,其高 表达可以抑制 DLBCL细胞的增殖和侵袭,具有作为 DLBCL诊断及预后预测生物标志物的潜力^[13-14]。目 前已有研究报道, miR-148a-3p能参与DLBCL致病 机制^[5]。其能直接参与DNA甲基化过程,刺激B细胞 激活和转录识别,影响B细胞成熟,从而影响多种肿 瘤进展^[15]。在本研究中, OCI-Ly1细胞中miR-148a-3p水平降低, 而下调LncRNA KCNQ10T1后, miR-148a-3p水平升高, 双荧光素酶实验中, KCNQ1OT1-WT和miR-148a-3p mimic共转染组OCI-Ly1细胞中 荧光酶活性降低,证实LncRNA KCNQ10T1与miR-148a-3p存在靶向关系。此外,进一步抑制miR-148a-3p会逆转沉默LncRNA KCNQ1OT1对OCI-LY1细 胞增殖、侵袭和耐药性的影响,表明LncRNA KC-NQ1OT1可能通过靶向miR-148a-3p促进DLBCL细 胞增殖和侵袭,增加其DOX耐药性。

综上所述, LncRNA KCNQ10T1可能通过靶向 miR-148a-3p促进人DLBCL细胞增殖和侵袭,增加 DOX耐药性。LncRNA KCNQ1OT1可能成为治疗 DLBCL的潜在靶点。但本研究仅选择单一细胞系 进行分析,临床标本样本量较少,且未进行体内实 验研究,后续将选择多个细胞系,并设计DLBCL小 鼠模型,进一步探究LncRNA KCNQ1OT1下调对体 内DLBCL的影响,对本实验结果进行深入验证,并 增加临床标本样本量,分析LncRNA KCNQ1OT1与 miR-148a-3p在DLBCL中的临床意义。

参考文献 (References)

- LIU B, ZHAO X, ZHANG S, et al. Targeting ZDHHC21/FASN [1] axis for the treatment of diffuse large B-cell lymphoma [J]. Leukemia, 2024, 38(2): 351-64.
- 刘宗凤, 冯猛, 梁世峰, 等. LncRNA XIST在甲状腺癌中的表达 [2] 及其对甲状腺癌细胞增殖,侵袭和迁移能力的影响[J]. 解剖科 学进展(LIU Z F, FENG M, LIANG S F, et al. Expression of IncRNA XIST in thyroid carcinoma and its effect on proliferation, invasion and migration of thyroid carcinoma cells [J]. Progress of Anatomical Sciences), 2023, 29(5): 462-6.
- [3] TAHERI M, SHIRVANI-FARSANI Z, HARSIJ A, et al. A review on the role of KCNQ1OT1 lncRNA in human disorders [J]. Pathol Res Pract, 2024, 255(1): 155723-31.
- [4] XU G, ZHU Y, LIU H, et al. Long non-coding RNA KCNQ10T1 promotes progression of hepatocellular carcinoma by miR-148a-3p/IGF1R axis [J]. Technol Cancer Res Treat, 2020, 19(1): 1533033820980117-27.
- MELNIK B C, STADLER R, WEISKIRCHEN R, et al. Potential [5] pathogenic impact of cow's milk consumption and bovine milkderived exosomal micrornas in diffuse large B-cell lymphoma [J]. Int J Mol Sci, 2023, 24(7): 6102-54.
- DAVARY AVARESHK A, JALAL R, GHOLAMI J. The effect [6] of ciprofloxacin on doxorubicin cytotoxic activity in the acquired resistance to doxorubicin in DU145 prostate carcinoma cells [J]. Med Oncol, 2022, doi: 10.1007/s12032-022-01787-9.
- SINKAREVS S, STRUMFS B, VOLKOVA S, et al. Tumour [7] microenvironment: the general principles of pathogenesis and implications in diffuse large B cell lymphoma [J]. Cells, 2024, 13(12): 1057-76.
- ZHAO F, LI S, LIU J, et al. Long non-coding RNA TRIM52-[8] AS1 sponges microRNA-577 to facilitate diffuse large B cell lymphoma progression via increasing TRIM52 expression [J]. Hum Cell, 2022, 35(4): 1234-47.
- [9] LIU C, ZHAO X, WANG Z, et al. LncRNA CHROMR/miR-27b-3p/MET axis promotes the proliferation, invasion, and contributes to rituximab resistance in diffuse large B-cell lymphoma [J].

J Biol Chem, 2024, 300(3): 105762-80.

- [10] XING X, XU T, LIU B, et al. LncRNA SNHG5 can regulate the proliferation and migration of diffuse large B cell lymphoma progression via targeting miR-181-5p/XIAP [J]. J Cancer, 2022, 13(3): 784-92.
- [11] 李攀,李晓明. LncRNA KCNQ1OT1在DLBCL患者中的表达 及其临床意义[J]. 肿瘤(LI P, LI X M. Expression of LncRNA KCNQ1OT1 in DLBCL patients and its clinical significance [J]. tumour), 2019, 39 (4): 298-304.
- [12] KHANMOHAMMADI S, MASROUR M, FALLAHTAFTI P, et al. MicroRNA as a potential diagnostic and prognostic biomarker

in diffuse large B-Cell lymphoma: a systematic review and metaanalysis [J]. Cancer Rep, 2025, 8(1): e70070-94.

- [13] GUO X, ZHANG J, ZENG J, et al. MiR-525-5p inhibits diffuse large B cell lymphoma progression via the Myd88/NF-κB signaling pathway [J]. PeerJ, 2023, 11(1): e16388-404.
- [14] KOUMPIS E, GEORGOULIS V, PAPATHANASIOU K, et al. The role of microRNA-155 as a biomarker in diffuse large B-cell lymphoma [J]. Biomedicines, 2024, 12(12): 2658-75.
- [15] PACZKOWSKA J, JANISZEWSKA J, BEIN J, et al. The tumor suppressive miR-148a is epigenetically inactivated in classical hodgkin lymphoma [J]. Cells, 2020, 9(10): 2292-306.