口服型调节性T细胞来源的外泌体治疗溃疡性结肠炎

李晓燕^{1,2} 高圆圆³ 叶玉琦² 张帆⁴ 黎梦^{2*} 丁凤¹ 张瑾^{1,2,3*} ('喀什大学生命与地理科学学院,喀什 844000;²嘉兴大学,生物与化学工程学院,嘉兴 314001; ³嘉兴爱博生物科技有限公司,嘉兴 314006; ⁴深圳市龙岗医院,深圳 518166)

摘要 该文旨在探究口服型调节性T细胞来源的外泌体(Treg-Exo)治疗葡聚糖硫酸钠(dextran sulfate sodium, DSS)诱导的小鼠溃疡性结肠炎的效果。以壳聚糖及海藻酸钠包裹Treg-Exo,获得能抵抗胃酸的口服型外泌体Treg-Exo@LBL。饮用3% DSS构建小鼠溃疡性结肠炎(ulcerative colitis, UC)模型后口服给药,通过活体成像分析药物靶向性;通过每组6只平行小鼠的体质量变化、结肠长度、DAI评分和H&E病理切片等评估治疗效果;通过血常规、生化指标检测和重要器官的组织学染色评估Treg-Exo@LBL的安全性。结果表明:与Treg-Exo组相比,对Treg-Exo进行壳层包覆后的Treg-Exo@LBL组更有利于其在肠炎部位的有效富集。通过Treg-Exo@LBL干预处理后,与Treg-Exo组相比,小鼠结肠长度约0.58 cm、体质量增加约10%,结肠组织中炎症因子IL-12、IL-6和髓过氧化物酶水平均显著降低。安全性评估结果显示Treg-Exo@LBL干预后,小鼠代表性血常规和生化指标数值均处于正常值范围内,且重要器官的组织学H&E染色也未显示异常变化,表明Treg-Exo@LBL具有良好的生物安全性。综上,口服型Treg-Exo@LBL可在溃疡性结肠炎病灶处富集,起到有效治疗作用,是一种安全的溃疡性结肠炎治疗策略。

关键词 溃疡性结肠炎;调节性T细胞;外泌体;壳聚糖;海藻酸钠

Oral Regulatory T Cell-Derived Exosomes in the Treatment of Ulcerative Colitis

LI Xiaoyan^{1,2}, GAO Yuanyuan³, YE Yuqi², ZHANG Fan⁴, LI Meng^{2*}, DING Feng¹, ZHANG Jin^{1,2,3*}

(¹College of Life and Geographic Sciences, Kashi University, Kashi 844000, China;

²College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China;

³Jiaxing i-bio Biotechnology Co., Ltd, Jiaxing 314006, China; ⁴Longgang Central Hospital of Shenzhen, Shenzhen 518166, China)

Abstract This study aimed to evaluate the therapeutic effects of oral Treg-Exo (regulatory T cell-derived exosomes) on DSS (dextran sulfate sodium)-induced UC (ulcerative colitis) mice. To enhance resistance against gastric acid, Treg-Exo were coated with chitosan and sodium alginate, forming LBL (layer-by-layer) shell coared Treg-Exo@LBL. After oral administration, the targeting ability of Treg-Exo@LBL was analyzed using an IVIS imaging system. The therapeutic effect of Treg-Exo@LBL was evaluated via weight change, colon length, DAI score and H&E pathological section. The safety of Treg-Exo@LBL was evaluated by blood routine examination, biochemical index detection and histological staining of major organs. The results revealed that coating Treg-Exo with LBL increased they accumulation at UC sites, resulting in improved therapeutic outcomes. Compared to the Treg-Exo@LBL group exhibited an increase in colon length by approximately 0.58 cm, a 10% increase in body weight, and notable reductions in inflammatory markers IL-12, IL-6, and myeloperoxidase levels

浙江省自然基金重点项目(批准号: LZ23C170002)和国家自然基金(批准号: 32172708)资助的课题

Received: September 27, 2024 Accepted: January 17, 2025

收稿日期: 2024-09-27 接受日期: 2025-01-17

^{*}通信作者。Tel: 15914245177, E-mail: lim5177@zjxu.edu.cn; Tel: 13516831490, E-mail: zhangjin7688@163.com

This work was supported by the Key Project of Zhejiang Provincial Natural Science Foundation (Grant No.LZ23C170002) and the National Natural Science Foundation of China (Grant No.32172708)

^{*}Corresponding authors. Tel: +86-15914245177, E-mail: lim5177@zjxu.edu.cn; Tel: +86-13516831490, E-mail: zhangjin7688@163.com

in colonic tissue. Safety evaluation results showed that the representative blood routine and biochemical indexes of mice were within the normal range after Treg-Exo@LBL intervention. Additionally, histological H&E staining of the major organs showed no abnormal changes, indicating the biosafety of Treg-Exo@LBL. In conclusion, Treg-Exo@LBL can serve as a safe agent which could target inflammatory bowel disease and treat UC effectively.

Keywords ulcerative colitis; regulatory T cells; exosomes; chitosan; sodium alginate

溃疡性结肠炎(ulcerative colitis, UC)是一种慢性非特异性炎症性肠道疾病,严重影响患者的生活质量^[1]。目前,UC的治疗主要是利用激素、小分子抑制剂和抗体等来减轻病症。然而这些治疗策略疗效有限且存在副作用大等难题^[2]。近期研究发现调节性T细胞(regulatory T cells, Treg)在维持肠道免疫平衡中起着关键作用^[34]。Treg细胞是表达CD4和标志性转录因子FOXP3(Forkhead box P3)的T细胞亚群,该细胞亚群以FOXP3、细胞T淋巴细胞相关抗原4(cytotoxic T lymphocyte-associated antigen-4, CTLA-4)和白细胞介素-10(interleukin-10, IL-10)等的表达增强为标志,与维持免疫稳态密切相关^[4]。

外泌体 (exosome, Exo)是直径为30~150 nm的 细胞外双层膜小囊泡,具有与源细胞相似的生物活 性物质和生理功能^[4-7]。调节性T细胞外泌体 (Treg-Exo)是由 Treg细胞分泌的外泌体,可以通过传递免 疫抑制性信号,促进巨噬细胞的选择性极化,从而 增强免疫调节功能^[8-10]。在UC中,Treg-Exo携带的 microRNA(如miR-195a-3p)和其他免疫调节因子^[10-12], 能够调控免疫细胞的功能,抑制过度的炎症反应,从 而缓解UC的症状^[13-16]。Treg-Exo中含有多种抗炎因 子和生长因子,可以减轻肠道炎症,促进受损组织的 修复,有助于UC患者的康复^[17-19],因此,Treg-Exo具 有UC治疗的潜在优势。

然而,目前Exo的给药方式通常是静脉给药,静脉给药的方式会使绝大部分Exo在肝脏部位富集,只有极少部分Exo能到达结肠病灶部位发挥作用;而且,静脉输注Exo可能会引起许多不良反应^[20]。所以,口服给药是Treg-Exo治疗UC疾病的更优给药方式,但胃酸、胃蛋白酶及消化酶等会破坏外泌体的活性,影响药效^[21-25]。因此,本研究探索开发口服型Treg-Exo制剂,采用可生物降解性材料,通过静电吸附的方式对Treg-Exo进行逐层包覆,使用动态光散射粒度仪(dynamic light scattering, DLS)检测壳层包覆情况,并在不同酸碱性环境及时间点取样,分析其稳定性。最后通过口服给药方式研究其对UC模型

的治疗效果。在7天造模期间口服给药3次,通过小鼠体质量、结肠长度、结肠部位炎症因子水平以及Treg细胞比例的变化等评估疗效。结果显示,与DSS模型对照组及未经壳层包覆的Treg-Exo相比,Treg-Exo@LBL对DSS诱导的UC具有更明显的治疗效果。

1 材料与方法

1.1 材料

1.1.1 主要试剂 X-VIVO基础培养基(04-418Q)、 模拟胃液(MSG0250)、模拟肠液(MSI9835)、细胞 膜DIR荧光探针(40757ES25)、小鼠髓过氧化物酶 Elisa试剂盒(SEKM-0118)、小鼠白介素-12 ELISA试 剂盒(SEKM-0012)、小鼠白细胞介素-6 ELISA试剂 盒(SEKM-0007)、超敏ECL化学发光试剂盒(P0018S) 购自北京索莱宝有限科技公司; T细胞活化与扩增 试剂盒(11161D)购自美国ThermoFisher Scientific 公司; anti-mouse CD3(100359)、FITC anti-mouse CD45(103108), Percp anti-mouse CD3(100326), Pacific blue anti-mouse CD4(100531), APC anti-mouse CD25(113708), PE anti-mouse FOXP3(126404), anti-mouse CD3(100359)购自北京Biolegend公司; anti-mouse CD28(BE0015-1)购自美国InVivoMAB 公司; IL-2(HY-P700649)、TGF-β(HY-P78360)购 自美国MedChemExpress公司; CD4磁珠(130-117-043)、Libtm-ROLiberaseTM(5401119001)和DNase I(10104159001)购自德国 Miltenyi Biotec公司; 无外 泌体胎牛血清(abs993)购自美国Gibco公司;葡聚糖 硫酸钠盐(D491691-40k-100g)购自上海阿拉丁生化 科技股份有限公司; 壳聚糖(C3646-10g)和海藻酸钠 (W201502-sample)购自Sigma公司。

1.1.2 主要仪器 细胞分选磁力架购自德国Miltenyi Biotec公司; 流式细胞仪购自美国BD公司; Western blot电泳系统购自上海天能科技有限公司; 细胞 培养箱、酶标仪、超净工作台、高速冷冻离心机均 购自美国ThermoFisher Scientific公司; 超速离心机 购自美国Beckman Coulter公司;动态光散射粒度仪 购自英国Malvern Panalytical Brands公司;小动物活 体成像仪(IVIS Lumina III)购自美国PerkinElmer公 司。

1.2 方法

1.2.1 Treg细胞的体外培养 Treg细胞的体外培养 具体操作和已有方案一样^[1],主要操作如下:6周龄 雄性C57BL/6N小鼠在异氟醚麻醉下通过二氧化碳 窒息方式安乐死,无菌条件下从C57BL/6N小鼠中 分离脾脏,在70 μm细胞筛网上研磨脾脏,以预冷的 PBS冲洗细胞筛网,收集以上液体于50 mL离心管中, 500 ×g、4 ℃离心5 min。离心完成后,弃上清,加入 红细胞裂解液, 37 °C裂解10 min, 再次500 ×g、4 °C 离心5 min,即得小鼠脾脏单细胞悬液。采用CD4⁺T细 胞分离试剂盒从单细胞悬液中分离CD4⁺T细胞。获 得的CD4⁺T细胞接种在含有1%青霉素--链霉素、10% 无外泌体血清、IL-2(20 ng/mL)和TGF-β(5 ng/mL)的 X-VIVO培养基中,加入刺激T细胞活化及扩增的抗 CD3和抗CD28抗体,将细胞置于37°C、5% CO2及 饱和湿度的培养箱中进行培养,7天后,获得Treg细 胞。

1.2.2 Treg-Exo的提取与表征 Treg-Exo的提取:收 集 Treg细胞的培养上清液在4°C下依次于300 ×g离 心10 min, 2 000 ×g离心15 min, 3 000 ×g离心20 min, 以除去死细胞和细胞碎片。收集上清液在4°C下 100 000 ×g超速离心70 min,收集沉淀用磷酸盐缓冲 液(phosphate buffer saline, PBS)重悬,即为Treg-Exo 悬液,使用 BCA(Bicinchoninic acid, BCA)法对蛋白 定量, -80 °C保存备用。

Treg-Exo形貌表征:取少量 PBS重悬的 Treg-Exo, 10 μL点样在铜网上, 沉淀3~5 min, 滤纸吸掉多 余液体, 然后用醋酸双氧铀负染30 s, 滤纸吸掉多余 液体, 自然晾干, 120 kV透射电子显微镜 (transmission electron microscope, TEM)观察Treg-Exo形貌。

Treg-Exo粒径电位检测:通过DLS测定样品粒 径及电位变化。

Western blot检测: BCA法检测 Treg-Exo蛋白浓度,通过8%~12%十二烷基硫酸钠聚丙烯酰胺凝胶 电泳(SDS-PAGE)分离 Treg-exo及 Treg-Exo@LBL的 壳层脱落后的样品,并将其转移到聚偏二氟乙烯 (PVDF)膜上。用 TBST溶液(10 mmol/L Tris-HCl pH 7.6、150 mmol/L NaCl和0.05% Tween-20)洗涤膜, 用 5%脱脂牛奶室温封闭 30 min后,弃去封闭液。将 TSG101、Alix、β-tubblin抗体用封闭液分别以1:1000, 1:1000,1:5000的倍数稀释,在4°C下孵育过夜。经 用 TBST溶液洗涤2次后,加入以1:5000的比例稀释 的辣根过氧化物酶偶联的抗体,室温下孵育2h。使 用超敏 ECL化学发光试剂盒(P0018S)检测条带,通 过凝胶成像仪(iBright CL 1500)进行成像。

1.2.3 Treg-Exo@LBL的制备与表征 将BCA定量 后的Treg-Exo以1 mg/mL加入壳聚糖溶液(1 mg/mL) 中,室温条件下,使用磁力搅拌器以500 r/min的速度 搅拌30 min,加入1 mL PBS缓冲液,在4 °C条件下 11 000 r/min离心15 min后,弃去上清;用上述方法 洗涤3次后,使用PBS重悬,得到壳聚糖包裹的Treg-Exo(Treg-Exo@壳聚糖);将Treg-Exo@壳聚糖悬浮于 海藻酸钠(2 mg/mL)溶液中,室温条件下,搅拌30 min 后,加入1 mL PBS,4 °C、11 000 r/min离心15 min,弃 去上清;用上述方法洗涤3次后,使用PBS重悬,即得 壳聚糖及海藻酸钠层层包裹(layer-by-layer, LBL)的 口服型Treg-Exo(Treg-Exo@LBL)。

1.2.4 DiR-Treg-Exo与DiR-Treg-Exo@LBL的制备 将Treg-Exo(1 mg/mL)中加入1 µL细胞膜DiR染色 剂,置于37 °C染色30 min后,参照厂家说明书,用 NapTM-5 Columns Sephadex[™]去除游离染料,即得 DiR-Treg-Exo,再对DiR-Treg-Exo进行逐层包覆,方 法同1.2.3,即得DiR-Treg-Exo@LBL。

1.2.5 Treg-Exo@LBL的稳定性及释放效果评估 将Treg-Exo@LBL分别溶于以下两种不同的pH条件 下:模拟胃液(simulated gastric fluid, SGF), SGF含有 0.32%胃蛋白酶的稀盐酸缓冲液, pH=1.2;模拟肠液 (simulated intestinal fluid, SIF), SIF含有1%胰酶的磷 酸盐缓冲液, pH=6.8;使用37°C的振荡器培养箱,以 60 r/min持续振荡作为孵育环境。分别孵育2h、4h、 6 h后取样,采用DLS测定样品电位变化,评估壳层脱 落情况。

1.2.6 动物实验 UC模型的构建。将18~20g雌性 C57BL/6N小鼠(购于北京维通利华实验动物有限公司)在特定的无病原体条件下饲养在动物设施中,通过在饮用水中加入3%硫酸葡聚糖钠盐(dextran sulfate sodium salt, DSS)建立UC小鼠模型。DSS模型 组小鼠每2天更换1次含DSS的饮用水。对照组正常 小鼠饮用不含3% DSS的正常水。

口服药物体内靶向分析。为了评估口服药物

的体内分布,将饮用3% DSS水7天后的UC模型小鼠随机分为两组。将DiR-Treg-Exo和DiR-Treg-Exo@LBL(剂量:20 mg/kg Treg-Exo,通过BCA试剂盒定量蛋白浓度)通过灌胃的给药方式分别给予两组UC模型小鼠。给药后第0、6、12、24 h通过IVIS Lumina III(激发和发射波长分别为745和800 nm)对小鼠进行活体成像。同时,设置平行实验,口服给药6 h后,所有小鼠安乐死,取出主要器官(包括心、肝、脾、肺、肾、胃及肠道组织),通过IVIS Lumina III观察离体器官中DiR标记的Treg-Exo和Treg-Exo@LBL的分布。

口服药物对UC模型小鼠的治疗效果评估。将 24只雌性C57BL/6N小鼠随机分为4组(6只/组): 空白 对照PBS组、DSS模型组、Treg-Exo和Treg-Exo@ LBL治疗组(剂量: 20 mg/kg Treg-Exo, 通过BCA试剂 盒定量蛋白浓度)。空白对照PBS组与DSS模型组小 鼠给与生理盐水溶液。所有小鼠在每次给药前禁食 12 h。从饮用DSS水后的第2天开始给药,每隔1天给 药1次,共给药3次。在治疗过程中,每天测量并记录 小鼠的体质量及疾病活动指数(disease activity index, DAI), 通过每天记录体质量、大便稠度和大便潜血, 以确定DAI值。结合小鼠的体质量下降百分率(体质 量不变为0,1~5为1分,5~10为2分,10~15为3分,大于 15为4分)、大便黏稠度(正常为0,松散的大便为2分, 腹泻为4分)和大便出血(正常0分,隐血阳性为2分, 显性出血为4分)三种情况进行综合评分,将3项结果 的总分除以3即得到DAI值^[29]。第7天对所有小鼠进 行安乐死,提取盲肠和结肠拍照并测量结肠长度。

酶联免疫吸附测定(enzyme-linked immune sorbent assay, ELISA):测试前将所有样品调整至相同的蛋白质浓度。按照说明书,通过ELISA试剂盒检测结肠中白细胞介素-6(iterleukin-6, IL-6)、白细胞介素-12(interleukin-12, IL-12)及髓过氧化物酶(my-eloperoxidase, MPO)的水平。

口服药物在炎症组织中的免疫调节活性。将18 只雌性C57BL/6N小鼠随机分为3组(6只/组):空白对 照PBS组、DSS模型对照组和Treg-Exo@LBL组,将 Treg-Exo@LBL进行BCA蛋白定量,以20 mg/kg的蛋 白量对小鼠进行灌胃给药。所有小鼠在每次给药前 禁食12 h。从饮用DSS水后的第2天开始给药,每隔1 天给药1次,对照组小鼠给与生理盐水溶液,共给药3 次。

第7天对所有小鼠进行安乐死,提取结肠组织,

将结肠组织去除肠系膜,放置于含有PBS液的无菌培 养皿中,沿肠系膜纵向剪开结肠在PBS中剧烈摇晃,清 洗结肠,去除肠腔内容物;剪刀将结肠黏膜组织剪成 约1mm的碎片,将剪碎的黏膜组织转移置于预热的装 有不含钙镁离子的缓冲液中, 37 ℃、250 r/min, 振荡 20 min, 弃掉液体, 重复2次; 第2次振荡后, 过滤, 用滤 纸吸去多余的液体,将结肠转移至离心管中剪碎;将 黏膜组织碎片转移至含有Libtm-ROLiberase[™]的无 菌培养瓶中, 37 °C、250 r/min, 消化30~60 min; 充分 涡旋,70 µm的细胞过滤器过滤,收集上清液至离心 管中,4°C、1 500 r/min离心10 min; 弃上清, 将分离 的细胞沉淀重新悬浮在冰不含钙镁的缓冲液中,将 通过以上处理的结肠样本置于冰上,使用FITC antimouse CD45, Percp anti-mouse CD3, Pacific blue anti-mouse CD4, APC anti-mouse CD25, PE antimouse FOXP3进行染色;用缓冲液清洗细胞2次,进 行4°C、1500 r/min离心5 min, 使用PBS缓冲液重悬, 采用流式细胞术检测治疗后结肠组织中Treg细胞的 表达情况。

结肠组织免疫组化/荧光及苏木素-伊红(hematoxylin and eosin, H&E)染色。小鼠结肠组织固定于 4%多聚甲醛中, 石蜡包埋。对石蜡切片进行MPO免 疫组化及E-钙黏蛋白(E-cadherin)免疫荧光分析。在 室温下用血清封闭30 min后,将MPO及E-cadherin 抗体分别用封闭液分别以1:1 000及1:500的倍数稀 释,将获得的样品在4°C下分别与相应的一抗孵育 过夜。随后, 加入以1:5 000的比例配制的山羊抗兔 以及山羊抗鼠抗体, 切片在室温下孵育15 min, 通过 显微镜获得切片随机视野图像。同时, 将石蜡包埋 的组织切成4 μm的切片, 乙醇脱水, 苏木精和伊红染 色, 使用光学显微镜获取图片。

药物安全性评估。将12只雌性C57BL/6N小鼠 随机分为2组(6只/组):空白对照(Control)组和Treg-Exo@LBL组,将Treg-Exo@LBL进行BCA蛋白定量, 以20 mg/kg的蛋白量对小鼠进行灌胃给药。所有小 鼠在每次给药前禁食12 h。每隔1天给药1次,Control 组小鼠给与生理盐水溶液,共给药3次后,取主要器 官(心、肝、脾、肺、肾)进行H&E染色;收集尾静脉 血液于抗凝管中,使用血常规检测仪进行血液中白 细胞(white blood cells,WBC)、红细胞(red blood cells, RBC)、红细胞比积(hematocrit, HCT)、血红蛋白(hemoglobin, HGB)及血小板(platelets, PLT)水平分析;同 时,取尾静脉血液,静置1 h后,4 °C、3 000 r/min离心 15 min后,取上清,使用全自动生化分析仪进行生化 指标中碱性磷酸酶(alkaline phosphatase, ALP)、谷 丙转氨酶(aspartate alanine transaminase, ALT)、谷草 转氨酶(aminotransferase, AST)、血尿素(blood urea nitrogen, BUN)及乳酸脱氢酶(lactate dehydrogenase, LDH)水平分析。

上述动物实验已通过深圳市龙岗中心医院动 物实验及实验动物伦理委员会审查批准(伦理批准 号:深龙中心医动伦[2024]第055号)。

1.3 统计学分析

实验数据均表示为均数±标准差(x±s)。使用 GraphPad Prism 8.0软件进行数据处理和方差分析。 两组间进行*t*检验比较,多组间进行单因素方差分析 (One-Way ANOVA), *P*<0.05被认为差异具有统计学 意义。

2 结果

2.1 Treg-Exo的提取与表征

利用磁珠分离得到未成熟CD4⁺T细胞,诱导培养7天后得到Treg细胞^[1],对细胞培养上清在4°C下依次300×g离心10 min、2 000×g离心15 min, 3 000×g离心20 min,以除去死细胞和细胞碎片。收集上清液在4°C下100 000×g超速离心70 min,PBS重悬沉淀得到Treg-Exo。TEM表征结果显示得到的Treg-Exo呈现典型的圆形杯状结构(图1A);DLS检测显示Treg-Exo的水合粒径在70 nm左右(图1B);Westernblot结果表明Treg-Exo表达TSG101和Alix,不表达内质网膜蛋白Calnexin(图1C),与文献报道的Treg-Exo表达特征一致^[1,10]。上述TEM、DLS和Westernblot结果表明我们成功提取到了Treg-Exo。

2.2 Treg-Exo@LBL制备与表征

为了增强外泌体在胃酸中的稳定性,通过壳聚 糖及海藻酸钠包覆 Treg-Exo。DLS结果显示包覆 壳聚糖后颗粒粒径增大,由原来的70 nm左右变为 了200 nm左右,同时颗粒表面电势由负变正,表明 Treg-Exo表面壳聚糖壳层的成功包覆。随后包覆海 藻酸钠壳层,可以看到包覆后颗粒粒径进一步增大, 颗粒表面电势由正变负,表明海藻酸钠壳层的包覆 成功(图2A和图2B)。如此,成功制备了层层包覆的 Treg-Exo@LBL。

为了探索 Treg-Exo@LBL在消化液中的稳定 性,不同时间点在SGF中进行取样,发现其电势一直 呈现负电荷,表明颗粒表面壳层未脱落,颗粒在模 拟胃液中具有良好的稳定性。为了考察 Treg-Exo@ LBL是否能在结肠部位可控释放,不同时间点在 SIF 中进行取样,发现2 h时颗粒表面电荷由负变正,表 明海藻酸钠壳层的脱落;2~6 h时颗粒表面电荷逐渐 由正变负,表明壳聚糖壳层的逐渐脱落(图2C)。收 集壳层脱落后的 Treg-Exo进行 TEM和 Western blot 表征。结果显示 Treg-Exo仍然具有完整的圆形杯状 结构,且其代表性蛋白(TSG101、Alix和Calnexin)和 未经包覆的 Treg-Exo一致,表明壳层的包覆和脱落 对 Treg-Exo的结构和功能没有显著影响(图2D和图 2E)。

以上结果表明, 壳聚糖和海藻酸钠壳层包覆的 Treg-Exo在胃部具有良好稳定性, 可以避免胃酸和胃 消化酶对Treg-Exo的损害, 有利于提高Treg-Exo在肠 炎部位的生物利用度; 而在模拟肠液中, 壳聚糖和海 藻酸钠可以逐层脱落, 释放Treg-Exo, 充分发挥疗效。

2.3 Treg-Exo@LBL在结肠病灶部位的富集评估

为了评估口服 Treg-Exo@LBL在炎症性结肠部

A: Treg-Exo的TEM图; B: Treg-Exo的水合粒径; C: Treg-Exo表面标志物(Alix、TSG101和Calnexin)的Western blot表征。 A: TEM image of Treg-Exo; B: the hydrodynamic size spread of Treg-Exo; C: the surface markers (Alix, TSG101 and Calnexin) expression of Treg-Exo determined by Western blot.

> 图1 Treg-Exo的表征 Fig.1 Characterization of Treg-Exo

A: Treg-Exo@LBL壳层包覆过程中的粒径变化(n=3); B: Treg-Exo@LBL壳层包覆过程中的电势变化(n=3); C: Treg-Exo@LBL在不同pH环境中的电势变化(n=3); D: Treg-Exo@LBL壳层脱落后的TEM图; E: Treg-Exo@LBL的壳层脱落后标志物蛋白的Western blot表征。A~C中数据用平均值±标准差(x±s)表示。

A: the change of particle size during the coating process of Treg-Exo@LBL (n=3); B: the change of zeta potential during the coating process of Treg-Exo@LBL (n=3); C: the potential changes of Treg-Exo@LBL in different pH environments (n=3); D: TEM images of Treg-Exo@LBL after LBL shedding; E: the marker protein of Treg-Exo@LBL after LBL shedding. data in A-C were expressed as mean±standard deviation ($\bar{x}\pm s$).

图2 Treg-Exo@LBL的表征 Fig.2 Characterization of Treg-Exo@LBL

位的富集效果,将DSS诱导的溃疡性结肠炎小鼠随 机分为2组,给与DiR标记的Treg-Exo和Treg-Exo@ LBL。给药后0、6、12及24 h进行活体成像,可以观 察到Treg-Exo@LBL比Treg-Exo在肠道部位聚集量 更多(图3A)。给药6 h后,对所有小鼠进行安乐死,取 心、肝、脾、肺、肾、胃及肠道进行离体器官成像, 同样发现Treg-Exo@LBL在结肠部位荧光更强(图 3B)。以上结果表明,壳聚糖及海藻酸钠包覆可以保 护Treg-Exo,使其更多地富集在结肠炎症部位。

2.4 Treg-Exo@LBL缓解UC症状疗效评估

基于上述结果,我们利用DSS诱导的溃疡性结肠炎模型来评估Treg-Exo@LBL的治疗效果。结果显示,与空白对照组相比,DSS模型组小鼠结肠长度明显缩短,体质量显著减轻。未包覆的Treg-Exo对UC有轻微的缓解作用;与Treg-Exo组相比,经过层层包壳后的Treg-Exo@LBL对DSS诱导的溃疡性结肠炎小鼠有明显治疗效果,结肠长度比Treg-Exo组长约0.58 cm、体质量增加约10%,并降低了结肠炎小鼠的DAI值(图4A~图4D)。这些数据清楚地表明,口服Treg-Exo@LBL可以在DSS诱导的结肠炎中发挥更好的治疗效果。

许多炎症细胞因子参与UC的发生。例如, IL-6

和IL-12是参与病理过程和炎症反应发展的常见促炎细胞因子,中性粒细胞分泌的MPO是中性粒细胞 浸润的重要标志物,间接反映了肠道炎症的水平,可 以通过检测MPO的表达水平来检测炎症细胞的浸 润^[29]。结果表明,Treg-Exo@LBL显著降低了IL-6和 IL-12的含量(图4E和图4F)。同时,DSS模型组结肠 部位的MPO含量增加,而Treg-Exo@LBL治疗组小 鼠肠道中的MPO含量降低(图4G)。这些数据表明口 服Treg-Exo@LBL可以有效地治疗UC。

随后,进一步评估Treg-Exo@LBL的免疫调节 效果。结果显示,与空白对照组相比,DSS模型组小 鼠结肠部位的Treg细胞数量有明显的降低。给予 Treg-Exo@LBL治疗后,小鼠结肠组织中的Treg细胞 的含量比DSS模型组显著高出3倍(图5A),表明Treg-Exo@LBL可以通过调控UC组织内Treg细胞的含量 进而调控结肠部位免疫稳态来缓解溃疡性结肠炎。

最后,通过结肠组织的H&E、MPO和E-cadherin 染色评估结肠的组织学变化。H&E染色结果显示, 与空白对照组中结肠组织的完整结构不同,DSS模 型组结肠组织的结构形态遭到破坏。而Treg-Exo@ LBL治疗组的炎症程度有明显降低,且治疗后结肠 组织结构基本完整,可以观察到清晰的隐窝结构和

A: 给药后不同时间点小动物活体成像; B: 给药6 h后的离体器官成像。

A: *in vivo* imaging of Treg-Exo@LBL-treated mice at different time points after oral administration; B: *ex vivo* organ imaging at 6 h after oral administration.

较少的炎症细胞浸润(图5B)。Treg-Exo@LBL良好的治疗效果通过MPO染色结果得到了验证(图5C)。进一步的紧密连接标志物E-cadherin染色结果表明Treg-Exo@LBL治疗可以修复肠道屏障功能,进而改善UC病症(图5D)。

以上Treg细胞免疫流式和E-cadherin等指标的 免疫组化/荧光结果表明我们构建的Treg-Exo@LBL 可以通过维持结肠部位免疫稳态、缓解结肠炎症、 促进肠上皮屏障损伤修复,多效治疗UC。

2.5 药物安全性评估

通过对口服Treg-Exo@LBL小鼠和健康小鼠进 行代表性血常规和生化指标检测及主要器官(心、 肝、脾、肺、肾)的H&E染色来评估Treg-Exo@LBL 的生物安全性。结果显示,与健康对照组(Control) 相比,Treg-Exo@LBL干预组小鼠血液中各代表性指 标均无明显变化,包括WBC、RBC、HCT、HGB、 PLT、ALP、ALT、AST、BUN及LDH(图6A和图 6B)。同时,H&E结果显示,口服Treg-Exo@LBL后 小鼠各主要器官无明显病理变化(图6C)。以上结果 都表明口服Treg-Exo@LBL具有良好的药物安全性。

3 讨论

Treg衍生的外泌体 Treg-Exo中含有 Treg分泌的

多种抗炎因子及抑炎因子,已有研究证明,Treg-Exo 可以通过静脉注射的方式来缓解及治疗DSS诱导的 UC模型^[28],但治疗效果未达预期,因此改进治疗策 略,提高Treg-Exo治疗效果非常重要。

本文將壳聚糖及海藻酸钠包覆于 Treg-Exo表 面,设计制备了一种壳层包覆的外泌体 Treg-Exo@ LBL,用于口服递药治疗 UC。本研究的结果显示壳 层包覆策略可以缓解胃酸环境对 Treg-Exo的影响, 使得相同条件下 Treg-Exo@LBL比 Treg-Exo在 UC病 灶部位富集和治疗效果更好。

肠道固有层中存在的Treg细胞对于维持免疫 自我耐受和免疫稳态至关重要。Treg细胞可以通过 竞争结合IL-2,来有效调控效应CD4⁺和CD8⁺T细胞 的增殖和细胞因子产生^[28]。Treg细胞还可以调控B 细胞增殖和抗体产生,调控巨噬细胞的促炎激活,并 调节单核细胞到巨噬细胞的分化。据报道,在患有 UC的患者中,肠道组织中Treg细胞的数量减少和功 能受损^[29]。在本项研究中,与DSS模型对照组相比, Treg-Exo@LBL治疗显著提高了肠道组织中Treg细 胞的数量,可通过维持结肠部位免疫稳态治疗UC。

Caspase 12是一种促凋亡蛋白,在先天免疫反应 期间被激活,miR-195a-3p是直接靶向Caspase 12并负 调控Caspase 12的表达,并参与UC的发病机制^[10]。尽

A: 不同给药组结肠图片; B: 第7天不同治疗组小鼠的结肠长度(n=6); C: 7天内的体质量变化(n=6); D: 不同治疗组小鼠的DAI评分(n=6); E: 第 7天不同治疗组小鼠结肠中IL-6的浓度(n=3); F: 第7天不同治疗组小鼠结肠中IL-12的浓度(n=3); G: 第7天不同治疗组小鼠结肠中MPO的浓度 (n=3)。B-G中数据用平均值±标准差($x\pm s$)表示,采用单因素方差分析数据。*P<0.05,**P<0.01,***P<0.001,****P<0.0001, 与PBS对照组相比。 A: pictures of colon with the indicated treatment; B: the colon length in A (n=6); C: weight change of mice within 7 days (n=6); D: DAI scores of mice in different treatment groups (n=6); E: the concentration of IL-6 in the colon of mice in different treatment groups on the 7th day (n=3); F: the concentration of IL-12 in the colon of mice in different treatment groups on the 7th day (n=3); F: the concentration of IL-12 in the colon of mice in different treatment groups on the 7th day (n=3); G: the concentration of MPO in the colon of mice in different treatment groups on the 7th day (n=3). data in B-G were expressed as mean±standard deviation ($x\pm s$), and the data were analyzed by single factor variance. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 compared with PBS group.

图4 Treg-Exo@LBL对UC的疗效评估 Fig.4 Therapeutic effects evaluation of Treg-Exo@LBL in UC mice

A: flow cytometry corresponding quantitative analysis of Treg cells in colon tissue (n=3); B: H&E staining images of colon tissue sections from mice in different treatment groups on the 7th day; C: immunohistochemical staining images of MPO in colon tissues of mice in different treatment groups on the 7th day; D: immunofluorescence staining images of E-cadherin in colon tissue sections of mice in different treatment groups on the 7th day. data in A were expressed as mean±standard deviation ($\bar{x}\pm s$), and the data were analyzed by single factor variance. **P<0.01; ns: not significant compared with PBS group.

图5 Treg-Exo@LBL治疗提高Treg细胞含量并促进肠道屏障的修复

Fig.5 Treg-Exo@LBL increased the content of Treg cells and promoted the repair of intestinal barrier in UC colon

管我们无法证明Treg-Exo调控UC中结肠组织微环 境是否完全是由于miR-195a-3p直接导致的,但我们 发现口服Treg-Exo@LBL不仅改善了结肠缩短、体 质量减轻、黏膜损伤、炎症细胞浸润结肠组织和肠 上皮细胞凋亡,增加了结肠组织中E-cadherin的表达 水平,还降低了结肠组织中炎性细胞因子(IL-6、IL-

图6 Treg-Exo@LBL的生物安全性评估 Fig.6 Biosafety of Treg-Exo@LBL assessment

12)的表达水平,这可能和miR-195a-3p相关。

此外,本文通过静电吸附的方式制备的壳聚糖 及海藻酸钠包覆的口服给药系统,可以降低不同pH值 对蛋白质类药物的影响,提高蛋白质类药物的生物利 用度,虽然本项研究并未阐明Treg细胞的外泌体是通 过哪种途径降低发炎部位的炎症水平的,后续需要进 一步进行通路验证,但壳聚糖及海藻酸钠的口服给药 系统可用于多种蛋白质类药物的口服递送。

参考文献 (References)

 TIAN Y, ZHANG F, QIU Y, et al. Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells [J]. Nat Biomed Eng, 2021, 5(9): 968-82.

- [2] TORRES J, HALFVARSON J, RODRÍGUEZ-LAGO I, et al. Results of the seventh scientific workshop of ECCO: precision medicine in IBD-prediction and prevention of inflammatory bowel disease [J]. J Crohns Colitis, 2021, 15(9): 1443-54.
- [3] ABO H, FLANNIGAN K L, GEEM D, et al. Combined IL-2 immunocomplex and anti-IL-5 mAb treatment expands Foxp3+ Treg cells in the absence of eosinophilia and ameliorates experimental colitis [J]. Front Immunol, 2019, 10(459): 1-9.
- [4] BAUCHÉ D, JOYCE-SHAIKH B, JAIN R, et al. LAG3+ regulatory T cells restrain interleukin-23-producing CX3CR1+ gutresident macrophages during group 3 innate lymphoid cell-driven colitis [J]. Immunity, 2018, 49(2): 342-52,e5.
- [5] BLAT D, ZIGMOND E, ALTEBER Z, et al. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells [J]. Mol Ther, 2014, 22(5): 1018-28.

- [6] CHEN W, SONG Y, BAI S, et al. Cloaking mesoporous polydopamine with bacterial membrane vesicles to amplify local and systemic antitumor Immunity [J]. ACS Nano, 2023, 17(8): 7733-49.
- [7] CANAVAN J B, SCOTTÀ C, VOSSENKÄMPER A, et al. Developing *in vitro* expanded CD45RA⁺ regulatory T cells as an adoptive cell therapy for Crohn's disease [J]. Gut, 2016, 65(4): 584-94.
- [8] CHEN J, XIE L, TOYAMA S, et al. The effects of Foxp3expressing regulatory T cells expanded with CD28 superagonist antibody in DSS-induced mice colitis [J]. Int Immunopharmacol, 2011, 11(5): 610-7.
- [9] CLOUGH J N, OMER O S, TASKER S, et al. Regulatory T-cell therapy in Crohn's disease: challenges and advances [J]. Gut, 2020, 69(5): 942-52.
- [10] LIAO F, LU X, DONG W. Exosomes derived from T regulatory cells relieve inflammatory bowel disease by transferring miR-195a-3p [J]. Iubmb Life, 2020, 72(12): 2591-600.
- [11] LU Y, KIM N M, JIANG Y W, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function [J]. Brit J Pharmacol, 2018, 175(7): 1085-99.
- [12] SANCTUARY M R, HUANG R H, JONES A A, et al. MiR-106a deficiency attenuates inflammation in murine IBD models [J]. Mucosal Immunol, 2019, 12(1): 200-11.
- [13] WANG J, ZHAO X, WAN Y Y. Intricacies of TGF-β signaling in Treg and Th17 cell biology [J]. Cell Mol Immunol, 2023, 20(9): 1002-22.
- [14] UGALDE V, CONTRERAS F, PRADO C, et al. Dopaminergic signalling limits suppressive activity and gut homing of regulatory T cells upon intestinal inflammation [J]. Mucosal Immunol, 2021, 14(3): 652-66.
- [15] VOSKENS C, STOICA D, ROSENBERG M, et al. Autologous regulatory T-cell transfer in refractory ulcerative colitis with concomitant primary sclerosing cholangitis [J]. Gut, 2023, 72(1): 49-53.
- [16] GUAN X, HU R, CHOI Y, et al. Anti-TIGIT antibody improves PD-L1 blockade through myeloid and Treg cells [J]. Nature, 2024, 627: 646-55.

- [17] YANG W, LIU H, XU L, et al. GPR120 inhibits colitis through regulation of CD4⁺ T cell interleukin 10 production [J]. Gastroenterology, 2022, 162: 50-65.
- [18] YU L, ZHOU B, ZHU Y, et al. HSF1 promotes CD69⁺ Treg differentiation to inhibit colitis progression [J]. Theranostics, 2023, 13(6): 1892-905.
- [19] ZHANG H L, ZHENG Y J, PAN Y D, et al. Regulatory T-cell depletion in the gut caused by integrin β7 deficiency exacerbates DSS colitis by evoking aberrant innate immunity [J]. Mucosal Immunol, 2016, 9(2): 391-400.
- [20] RAMOS G P, PAPADAKIS K A. Mechanisms of disease: inflammatory bowel diseases [J]. Mayo Clin Proc, 2019, 94(1): 155-65.
- [21] NOOR N M, LEE J C, BOND S, et al. A biomarker-stratified comparison of top-down versus accelerated step-up treatment strategies for patients with newly diagnosed Crohn's disease (PROFILE): a multicentre, open-label randomised controlled trial [J]. Lancet Gastroenterol, 2024, 9(5): 415-27.
- [22] KAPLAN G G. The global burden of IBD: from 2015 to 2025 [J]. Nat Rev Gastro Hepat, 2015, 12(12): 720-7.
- [23] WANG M, CHA R, HAO W, et al. Nanocrystalline cellulose modulates dysregulated intestinal barriers in ulcerative colitis[J]. ACS Nano, 2023, 17(19): 18965-78.
- [24] VILLABLANCA E J, SELIN K, HEDIN C R H. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression [J]? Nat Rev Gastro Hepat, 2022, 19(8): 493-507.
- [25] YANG H, SUN L, CHEN R, et al. Biomimetic dendritic polymeric microspheres induce enhanced T cell activation and expansion for adoptive tumor immunotherapy [J]. Biomaterials, 2023, 296: 122048.
- [26] GE Y, LI Y, GONG J, et al. Mesenteric organ lymphatics and inflammatory bowel disease [J]. Ann Anat, 2018, 218: 199-204.
- [27] CHEN Z, HAO W, GAO C, et al. A polyphenol-assisted IL-10 mRNA delivery system for ulcerative colitis [J]. Acta Pharm Sin B, 2022, 12(8): 3367-82.
- [28] RAHMAN A T, SHIN J, WHANG C H, et al. Bilirubin nanomedicine rescues intestinal barrier destruction and restores mucosal immunity in colitis [J]. ACS Nano, 2023, 17(11): 109961013.