CircDOCK1通过调控miR-128-3p/HMGB3轴 影响胃癌进展

范桂莲* 卢红明 孙宇 杜金凤 姚雪 (大庆油田总医院病理科,大庆 163001)

摘要 该研究目的在于探讨 circDOCK1对胃癌细胞功能的影响及其机制。qRT-PCR法 与Western blot法检测胃癌组织、癌旁组织、人胃黏膜上皮细胞GES-1、人胃癌细胞HGC-27中 circDOCK1、miR-128-3p、HMGB3的表达情况;再将si-NC、si-circDOCK1、miR-NC、miR-128-3p mimic、si-circDOCK1+miR-NC inhibitor和si-circDOCK1+miR-128-3p inhibitor分别转染至HGC-27细胞,分为 si-NC组、si-circDOCK1组、miR-NC组、miR-128-3p mimic组、si-circDOCK1+miR-NC inhibitor组和 si-circDOCK14+miR-128-3p inhibitor组和 si-circDOCK1+miR-128-3p inhibitor组;双荧光素酶报告实验证实 circDOCK1和 miR-128-3p的靶向关系;CCK-8法、克隆形成实验、划痕实验、Transwell实验与流式细胞术分析 细胞功能。CircDOCK1与HMGB3在胃癌组织和HGC-27细胞中表达上调,而miR-128-3p表达下调 (P<0.05); circDOCK1可靶向miR-128-3p调控HMGB3表达;转染si-circDOCK1或miR-128-3p mimic 均可促进细胞凋亡 (P<0.05), 却抑制细胞增殖、迁移和侵袭 (P<0.05); 此外, miR-128-3p inhibitor 可逆转 si-circDOCK1对 HGC-27细胞凋亡的促进作用,以及对细胞增殖、迁移和侵袭的抑制作用。CircDOCK1可通过miR-128-3p/HMGB3轴促进胃癌细胞增殖、迁移、侵袭并诱导凋亡,表明 circDOCK1可能是胃癌治疗的潜在分子靶点。

关键词 胃癌; circDOCK1; miR-128-3p; HMGB3; 细胞增殖; 迁移; 侵袭

CircDOCK1 Affects Gastric Cancer Progression by Regulating the miR-128-3p/HMGB3 Axis

FAN Guilian*, LU Hongming, SUN Yu, DU Jinfeng, YAO Xue (Department of Pathology, Daqing Oilfield General Hospital, Daqing 163001, China)

Abstract This article aims to explore the effect of circDOCK1 on gastric cancer cell functions and its mechanism. The expression levels of circDOCK1, miR-128-3p and HMGB3 in gastric cancer tissues, adjacent tissues, human gastric mucosal epithelial cells GES-1, and human gastric cancer cells HGC-27 were determined by qRT-PCR and Western blot. si-NC, si-circDOCK1, miR-NC, miR-128-3p mimic, si-circDOCK1+miR-NC inhibitor and si-circDOCK1+miR-128-3p inhibitor were transfected into HGC-27 cells, respectively. The HGC-27 cells were divided into si-NC group, si-circDOCK1 group, miR-NC group, miR-128-3p mimic group, si-circDOCK1+miR-128-3p inhibitor group and si-circDOCK1+miR-128-3p inhibitor group. Targeting relationship of circDOCK1 and miR-128-3p was assessed by dual-luciferase reporter assay. CCK-8 method, clone formation experiment, scratch experiment, Transwell experiment and flow cytometry were used to detect cell functions. CircDOCK1 and HMGB3 levels were upregulated, while miR-128-3p level was downregulated in gastric cancer tissues and HGC-27 cells

收稿日期: 2024-08-27 接受日期: 2024-10-28

*通信作者。Tel: 13936994670, E-mail: fanguilian790304@163.com

Received: August 27, 2024 Accepted: October 28, 2024

^{*}Corresponding author. Tel: +86-13936994670, E-mail: fanguilian790304@163.com

(P<0.05). CircDOCK1 could target miR-128-3p to regulate HMGB3 expression. Transfection of si-circDOCK1 or miR-128-3p mimic promoted cell apoptosis (P<0.05), but inhibited cell proliferation, migration and invasion (P<0.05). In addition, miR-128-3p inhibitor reversed the promoting effect of si-circDOCK1 on HGC-27 cell apoptosis, as well as the inhibitory effect on cell proliferation, migration and invasion. CircDOCK1 promoted gastric cancer cell proliferation, migration, invasion, and induced apoptosis by miR-128-3p/HMGB3 axis, indicating that circDOCK1 might be a potential molecular target for the treatment of gastric cancer.

Keywords gastric cancer; circDOCK1; miR-128-3p; HMGB3; cell proliferation; migration; invasion

胃癌是我国常见的一种恶性肿瘤,是全球癌症 相关死亡的主要原因,严重影响患者生活质量^[1]。 胃癌的频繁转移使其治疗复杂化,因此迫切需要开 发有效的诊断和治疗方法。近年来,随着对非编码 RNA研究的深入, 越来越多的 RNA被发现。环状 RNA(circular RNA, circRNA)是一种非编码RNA, 充 当微小RNA(miRNA)的海绵分子而调控基因表达, 进而介导胃癌发展^[2-4]。近年来, circRNA已成为胃 癌治疗的药物靶点,特别是在肿瘤免疫、肿瘤代谢 和肿瘤转移等领域,这证实了circRNA作为预后、诊 断和治疗靶点的重要性^[5-7]。CircDOCK1在甲状腺 癌组织中表达水平升高,并可促进甲状腺癌细胞增 殖、迁移及侵袭^[8]。此外, circDOCK1在乳腺癌组织 中高表达,其通过靶向miR-128-3p介导的NEK2下调 来促进乳腺癌的进展^[9]。因此, circDOCK1可能是一 个介导肿瘤进展的促癌因子。然而, circDOCK1在 胃癌进展中的作用及潜在机制尚不清楚。

研究表明,上调miR-128-3p可抑制肺癌细胞增 殖、迁移及侵袭^[10]。在胃癌中,miR-128-3p的低表 达与胃癌患者的总生存率有关,且上调miR-128-3p 可抑制胃癌细胞的活力、侵袭和上皮–间质转化,并 加速细胞调亡^[11]。已有报道显示,*HMGB3*作为癌 基因可调控肿瘤细胞转移、凋亡和增殖等多种生 物学行为,进而介导肿瘤生成过程^[12-13]。研究表明, HMGB3在胃癌细胞中表达水平升高,沉默HMGB3 可诱导细胞周期阻滞及抑制细胞增殖、迁移及侵袭, 表明*HMGB3*作为癌基因调控胃癌恶性进展^[14]。通 过 Starbase和Targetscan预测,我们发现circDOCK1 靶向miR-128-3p,且miR-128-3p与高迁移率族蛋白 B3(high mobility group-box 3, *HMGB3*)存在互补序列。 然而, circDOCK1是否调控miR-128-3p/HMGB3轴介导 胃癌发展,仍不清楚。

本研究的目的在于解释 circDOCK1在胃癌进 展中的作用及潜在分子机制。基于以上,我们推测 circDOCK1可能通过调控miR-128-3p/HMGB3轴介 导胃癌细胞进展,这些发现可能为胃癌的治疗提供 潜在分子靶点。

1 材料与方法

1.1 材料与试剂

收集于本院接受治疗的29例胃癌患者的胃癌 组织及癌旁组织,置于-80°C冰箱内保存备用。病 人或其亲属均签署了知情同意书,本研究获得了 大庆油田总医院伦理委员会的批准(伦理审批号: DQYTZYYLL-202301-002)。

人胃黏膜上皮细胞GES-1、胃癌细胞HGC-27 购自北京Biovector质粒载体菌种细胞蛋白抗体基 因保藏中心; DMEM(C0891-100 mL)、胎牛血清 (C0251)、CCK-8试剂(C0037)、细胞凋亡检测试剂 盒(C1062M)购自上海碧云天生物技术有限公司;兔 anti-HMGB3(ab75782), anti-Bax(ab32503), anti-Bcl-2(ab32124)、anti-GAPDH(ab8245)、山羊抗兔 IgG二抗(ab205718)购自美国Abcam公司; Transwell 小室(3422)、Matrigel基质胶(354234)购自美国BD 公司; Lipofectamine 2000(11668019)、Trizol试剂 (15596018CN)、反转录试剂(N8080234)、荧光定 量PCR试剂(10572014)购自美国Invitrogen公司; sicircDOCK1、si-NC、miR-128-3p mimic、miR-NC、 miR-128-3p inhibitor购自广州锐博生物科技有限公 司;荧光素酶报告基因载体、荧光素酶活性检测试 剂盒(E1910)购自美国Promega公司。

1.2 方法

1.2.1 实验分组及细胞转染 GES-1细胞、HGC-27细胞培养于含10%胎牛血清的DMEM培养基中。在细胞达到50%汇合度时,使用Lipofectamine
2000进行细胞转染,根据转染物的不同,记为si-NC(5'-UUC UCC GAA CGU GUC ACG UTT-3')
组、si-circDOCK1(5'-AAC AGC TTT TTA TAA CTA TGA dTdT-3')组、miR-NC(5'-UUC UCC GAA CGU GUC ACG UTT-3')组、miR-128-3p mimic(5'-UCA CAG UGA ACC GGU CUC UUU-3')组、sicircDOCK1+miR-NC inhibitor(5'-CAG UAC UUU UGU GUA GUA CAA-3')组、si-circDOCK1+miR-128-3p inhibitor(5'-AAA GAG ACC GGU UCA CUG UGA-3')组。正常培养的细胞记为 control组。转染 48 h后,使用0.25%胰蛋白酶于37 °C消化30 s收集细 胞,进行qRT-PCR、CCK-8、克隆形成实验、划痕实验、 Transwell实验、流式细胞术或Western blot等实验。

1.2.2 qRT-PCR 取胃癌组织、癌旁组织、GES-1 细胞与HGC-27细胞,加入Trizol试剂提取RNA,随后利用反转录试剂盒将总RNA反转录合成cDNA,用荧光定量试剂进行PCR扩增反应,采用2^{-ΔΔCt}法计算相对表达量。PCR序列如下。CircDOCK1:F 5'-CTG GAA CTC TGC CTC AGG AT-3', R 5'-CCT CGG TAC CAC CCT TCA TA-3'; *GAPDH*:F 5'-TCG GAG TCA ACG GAT TTG GT-3', R 5'-TTC CCG TTC TCA GCC TTG AC-3'; miR-128-3p:F 5'-CGC GTC ACA GTG AAC CGG T-3', R 5'-AGT GCA GGG TCC GAG GTA TT-3'; *U*6:F 5'-ATT GGA ACG ATA CAG AGA AGA TT-3', R 5'-GGA ACG CTT CAC GAA TTT G-3'。

1.2.3 双荧光素酶报告实验 将 circDOCK1 或 HMGB3与 miR-128-3p的结合位点 (WT-circ-DOCK1: 272 bp, WT-HMGB3: 170 bp)及其突变序 列(MUT-circDOCK1: 238 bp, MUT-HMGB3: 146 bp) 分别克隆至 pmirGLO载体上,得到野生型和突变型 载体 (WT/MUT-circDOCK1或WT/MUT-HMGB3)。 将 WT/MUT-circDOCK1或WT/MUT-HMGB3]。 将 WT/MUT-circDOCK1或WT/MUT-HMGB3载体 分别与 miR-NC/miR-128-3p mimic共转染至HGC-27细胞,用双荧光素酶检测试剂盒分析荧光素酶活 性,评估 miR-128-3p和 circDOCK1或 HMGB3的互 作关系。

1.2.4 CCK-8实验 取各组细胞接种于96孔板于 37°C和5% CO₂培养48 h,随后加入CCK-8溶液于37°C 孵育2 h,应用酶标仪检测波长为450 nm时的D值,分 析细胞增殖抑制率。

1.2.5 克隆形成实验 收集各组细胞接种于6孔板 于37°C和5% CO₂培养14天,形成的菌落于室温下用 4%多聚甲醛固定15 min和0.5%结晶紫染色10 min, 最后在显微镜下分析克隆形成数。 1.2.6 划痕实验 收集各组细胞接种于6孔板,待 细胞长至90%融合时,用200μL无菌移液管在细胞 单层划线,在显微镜下拍照记为0h,用无血清培养 基室温培养24h后,用ImageJ软件分析迁移距离并计 算划痕愈合率。

1.2.7 Transwell实验 取各组细胞接种于铺满 Matrigel基质胶的Transwell上室,下室加入完全培养 液,室温培养48 h后,下室的细胞于室温下用4%多聚 甲醛固定15 min和0.5%结晶紫染色10 min。显微镜 下分析穿膜细胞数。

1.2.8 流式细胞术 收集各组细胞,用结合缓冲液重 悬,与Annexin V-FITC和PI于室温下避光孵育10 min, 用流式细胞仪分析细胞凋亡率。

1.2.9 Western blot 取胃癌组织、癌旁组织、 GES-1细胞与HGC-27细胞,用RIPA提取总蛋白,进 行电泳和转膜。膜于室温下经过脱脂牛奶封闭2h后, 与anti-HMGB3(1:1000)、anti-Bax(1:1000)、anti-Bcl-2(1:1000)或anti-GAPDH(1:2500)于4°C孵育过 夜,随后加入二抗稀释液(1:50000)于室温孵育1h, 曝光显影,用ImageJ软件分析灰度值。

1.3 统计学分析

采用SPSS 21.0统计学软件分析数据, 计量资料 以(x±s)表示, 组间比较采用独立样本t检验或单因素 方差分析, 以P<0.05为差异具有统计学意义。

2 结果

2.1 胃癌组织中circDOCK1、miR-128-3p和HMGB3表达情况

与癌旁组织相比,胃癌组织中circDOCK1表达 水平和HMGB3蛋白水平上调(P<0.05),而miR-128-3p表达水平下降(P<0.05),见图1。

2.2 胃癌细胞中circDOCK1、miR-128-3p和HMGB3表达情况

与GES-1细胞相比, HGC-27细胞中 circDOCK1 表达水平和HMGB3蛋白水平上升(P<0.05), 而miR-128-3p表达水平下降(P<0.05), 见图2。

2.3 CircDOCK1影响miR-128-3p和HMGB3的表达

与si-circDOCK1+miR-NC inhibitor组相比, sicircDOCK1组circDOCK1表达水平和HMGB3蛋白表 达水平下调,而miR-128-3p表达水平上调(P<0.05); miR-128-3p mimic组miR-128-3p表达水平上升 (P<0.05),而HMGB3蛋白表达水平下降(P<0.05); si-

A,B: qRT-PCR was used to detect circDOCK1 and miR-128-3p expression in gastric cancer tissues and adjacent normal tissues; C: Western blot was used to measure HMGB3 protein level in gastric cancer tissues and adjacent normal tissues. N: adjacent normal tissues; C: gastric cancer tissues. ***P<0.001.

图1 CircDOCK1、miR-128-3p和HMGB3在胃癌组织中的表达情况

A、B: qRT-PCR检测circDOCK1和miR-128-3p在GES-1和HGC-27细胞中的表达情况; C: Western blot检测HMGB3在GES-1和HGC-27细胞中的表达情况。***P<0.001。

A,B: qRT-PCR was used to detect circDOCK1 and miR-128-3p expression in GES-1 and HGC-27 cells; C: Western blot was used to measure HMGB3 protein level in GES-1 and HGC-27 cells. ***P<0.001.

图2 CircDOCK1、miR-128-3p和HMGB3在HGC-27细胞中的表达情况 Fig.2 Expression of circDOCK1, miR-128-3p and HMGB3 in HGC-27 cells

circDOCK1+miR-128-3p inhibitor组miR-128-3p表 达水平降低(*P*<0.05), HMGB3蛋白表达水平则升高 (*P*<0.05); 见图3。

2.4 CircDOCK1、miR-128-3p和HMGB3靶向关系

Starbase预测分析 circDOCK1与 miR-128-3p互 补结合, Targetscan预测分析miR-128-3p与HMGB3互 补结合, 见图4A。miR-128-3p可降低WT-circDOCK1 和WT-HMGB3组细胞荧光素酶活性(P<0.05), 而不 影响 MUT-circDOCK1和 MUT-HMGB3组细胞荧光 素酶活性, 见图4B。

2.5 CircDOCK1/miR-128-3p/HMGB3影响HGC-27增殖

与si-NC组和miR-NC组相比,si-circDOCK1组和miR-128-3p mimic组中的细胞增殖抑制率上升且

克隆形成数下降(P<0.05); 与si-circDOCK1+miR-NC inhibitor组相比, si-circDOCK1+miR-128-3p in-hibitor组中的细胞增殖抑制率下降且克隆形成数上 调(P<0.05); 见图5。

2.6 CircDOCK1/miR-128-3p/HMGB3影响HGC-27迁移、侵袭

与si-NC组和miR-NC组相比,si-circDOCK1组 和miR-128-3p mimic组中的划痕愈合率和侵袭细胞 数下降(P<0.05);与si-circDOCK1+miR-NC inhibitor 组相比,si-circDOCK1+miR-128-3p inhibitor组中的 划痕愈合率和侵袭细胞数上调(P<0.05);见图6。

2.7 CircDOCK1/miR-128-3p/HMGB3影响HGC-27凋亡

与si-NC组和miR-NC组相比, si-circDOCK1组

A: qRT-PCR检测 circDOCK1在HGC-27细胞中转染 si-NC、si-circDOCK1后的表达情况; B: qRT-PCR检测 miR-128-3p在HGC-27细胞中转染 si-NC、si-circDOCK1、miR-NC、miR-128-3p mimic、si-circDOCK1+miR-NC inhibitor、si-circDOCK1+miR-128-3p inhibitor后的表达情况; C: Western blot检测 HMGB3在HGC-27细胞中转染 si-NC、si-circDOCK1、miR-NC、miR-128-3p mimic、si-circDOCK1+miR-NC inhibitor、si-circDOCK1+miR-128-3p mimic、si-circDOCK1+miR-NC inhibitor、si-circDOCK1+miR-128-3p mimic、si-circDOCK1+miR-NC inhibitor、si-circDOCK1+miR-NC inhibitor、si-circDOCK1+miR-NC inhibitor、si-circDOCK1+miR-NC inhibitor、si-circDOCK1+miR-NC inhibitor、si-circDOCK1+miR-128-3p mimic、si-circDOCK1+miR-NC inhibitor、si-circDOCK1+miR-NC inhibitor系 inhibitor系

A: qRT-PCR was used to detect circDOCK1 expression in HGC-27 cells transfected with si-NC, si-circDOCK1; B: qRT-PCR was used to detect miR-128-3p expression in HGC-27 cells transfected with si-NC, si-circDOCK1, miR-NC, miR-128-3p mimic, si-circDOCK1+miR-NC inhibitor, si-circDOCK1+miR-128-3p inhibitor; C: Western blot was used to measure HMGB3 protein level in HGC-27 cells transfected with si-NC, si-circDOCK1, miR-NC, miR-128-3p mimic, si-circDOCK1+miR-NC inhibitor, si-circDOCK1+miR-128-3p mimic, si-circDOCK1+miR-128-3p mi

A: Starbase和Targetscan分别预测miR-128-3p与circDOCK1/HMGB3的互补结合位点; B: 双荧光素酶报告实验分析miR-128-3p与circDOCK1的互 作关系; C: 双荧光素酶报告实验分析miR-128-3p与HMGB3的互作关系。红色代表突变碱基。***P<0.001; ns: P>0.05。

A: Starbase and Targetscan were used to predicted the complementary binding sites of miR-128-3p with circDOCK1/HMGB3, respectively; B: dual-luciferase reporter assay was used to analyze the interaction between miR-128-3p and circDOCK1; C: dual-luciferase reporter assay was used to analyze the interaction between miR-128-3p and HMGB3. The red color represents the mutated bases. ***P<0.001; ns: P>0.05.

图4 miR-128-3p与circDOCK1/HMGB3的互补序列及双荧光素酶报告实验

Fig.4 The miR-128-3p and circDOCK1/HMGB3 complementary sequence and dual-luciferase reporter assay

A: CCK-8实验检测细胞抑制率; B: 克隆形成实现评估细胞增殖。***P<0.001。

A: CCK-8 assay was used to measure cell inhibition rate; B: colony formation assay was performed to assess cell proliferation. ***P<0.001. 图5 CircDOCK1/miR-128-3p/HMGB3影响细胞抑制率和克隆形成数

Fig.5 CircDOCK1/miR-128-3p/HMGB3 affects cell inhibition rate and colony formation

A: 划痕实验检测细胞迁移; B: Transwell检测细胞侵袭。***P<0.001。

A: cell migration was measured by wound healing assay; B: cell invasion was detected by Transwell assay. ***P<0.001.

图6 CircDOCK1/miR-128-3p/HMGB3影响划痕愈合率和侵袭细胞数

Fig.6 CircDOCK1/miR-128-3p/HMGB3 affects wound healing rate and invaded cell numbers

和miR-128-3p mimic组中的细胞凋亡率和Bax水平上 升,而Bcl-2水平下降(P<0.05); 与si-circDOCK1+miR-NC inhibitor组相比, si-circDOCK1+miR-128-3p inhibitor组中的细胞凋亡率和Bax水平下降,而Bcl-2水 平上升(P<0.05); 见图7。

3 讨论

CircDOCK1的异常表达参与调控了多种肿瘤 生成过程。CircDOCK1在骨肉瘤组织和细胞中高表 达,过表达circDOCK1可以促进体内致癌性和体外 恶性转化,并调控顺铂敏感性^[15]。CircDOCK1在结

A: 流式细胞术分析细胞凋亡率; B: Western blot分析Bcl-2和Bax蛋白表达水平。***P<0.001。 A: flow cytometry was used to detect cell apoptosis rate; B: Western blot was used to analyze Bcl-2 and Bax protein levels. ***P<0.001. 图7 CircDOCK1/miR-128-3p/HMGB3影响凋亡

Fig.7 CircDOCK1/miR-128-3p/HMGB3 affects cell apoptosis

直肠癌组织和细胞中的表达能力增强,其可以促进 细胞生长、迁移和侵袭,并抑制细胞凋亡^[16]。Circ-DOCK1在膀胱癌组织和细胞系中表达上调,抑制其 表达可抑制细胞增殖及迁移,还可抑制体内移植瘤 生长^[17]。CircDOCK1在口腔鳞状细胞癌中呈高表达, 并可促进细胞生长^[18]。以上研究证实了circDOCK1 的促癌作用。然而,circDOCK1在胃癌进展中的作 用和机制尚未被研究。本结果显示,circDOCK1在 胃癌组织与细胞中上调。通过功能缺失实验,我们 发现circDOCK1沉默可抑制胃癌细胞增殖、迁移、 侵袭并促进凋亡。*Bcl-2和Bax*是凋亡过程中功能相 互对立的一对调控基因,其中*Bcl-2*主要发挥抑制凋 亡的作用,而*Bax*发挥促进凋亡的作用^[19-20]。在本研 究,circDOCK1敲低显著降低了Bcl-2水平而增加了 Bax水平,表明circDOCK1可能促进Bcl-2水平而降低Bax水平,进而抑制胃癌细胞凋亡。这些结果表明circDOCK1作为促癌因子加速胃癌细胞的生长和转移,进而促进胃癌恶性进展。

研究表明,过表达miR-128-3p显著抑制鼻咽癌 细胞的增殖,诱导DNA损伤和凋亡,并促进细胞的 放射敏感性^[21]。miR-128-3p在前列腺癌组织中低 表达,其可抑制前列腺癌细胞的增殖、迁移、侵袭 和血管生成^[22]。miR-128-3p在宫颈癌组织中下调, miR-128-3p抑制剂可促进宫颈癌细胞体外增殖,抑 制细胞凋亡和细胞周期阻滞^[23]。miR-128-3p在乳 腺癌患者中低表达,其可以抑制乳腺癌细胞的增殖 和运动能力^[24]。这些研究证实了miR-128-3p的抑 癌作用。在胃癌中,较低的miR-128-3p表达水平与

胃癌患者较差的总生存期相关[25]。此外,还有研究 显示下调miR-128-3p可以促进胃癌的增殖、迁移 和侵袭^[26]。以上报道证实了miR-128-3p在胃癌进展 中的消极作用。本研究结果显示, miR-128-3p在胃 癌组织与细胞中下调,且circDOCK1通过靶向miR-128-3p抑制其表达。本研究结果显示, miR-128-3p 过表达可以降低胃癌细胞增殖、迁移和侵袭能力, 并促进细胞凋亡,这和既往报道的miR-128-3p具有 抑制胃癌进展的结果一致。另外,本研究结果发现, miR-128-3p过表达抑制Bcl-2表达而促进Bax表达, 进一步表明miR-128-3p可以加速胃癌细胞凋亡。此 外, 挽救实验分析显示, 抑制miR-128-3p可回复沉默 circDOCK1对胃癌细胞增殖、迁移、侵袭、Bcl-2表 达的抑制作用以及其对凋亡和Bax表达的促进作用, 表明circDOCK1通过靶向抑制miR-128-3p促进胃癌 细胞恶性生物学行为。

HMGB3可能是胃癌患者潜在的预后指标, 其可以促进胃癌细胞干性,加速胃癌进展[27-28]。 HMGB3在胃癌相关成纤维细胞中高表达,其可以加 速癌相关成纤维细胞对胃癌细胞顺铂耐药、增殖、 侵袭、迁移和上皮-间质转化的促进作用,进而促进 胃癌进展^[29]。HMGB3在胃癌的进展阶段呈高水平 表达,与患者原发肿瘤、淋巴结转移和临床分期显 著相关^[30]。和既往的报道一致,我们证实HMGB3在 胃癌组织与细胞中表达上调。进一步的分析结果显 示,HMGB3是miR-128-3p的靶点,且circDOCK1通 过靶向miR-128-3p促进HMGB3的表达,这提示circ-DOCK1通过调控miR-128-3p/HMGB3轴促进胃癌细 胞进展。尽管NI等^[9]指出circDOCK1通过调控miR-128-3p促进乳腺癌进展,且SUN等^[31]指出miR-128-3p靶向HMGB3调控脓毒症相关急性肺损伤,但是 circDOCK1是否通过调控miR-128-3p介导胃癌进展, 且miR-128-3p是否通过靶向HMGB3调控胃癌进程 尚不清楚。我们的研究首次将 circDOCK1/miR-128-3p/HMGB3轴结合起来,明确了circDOCK1/miR-128-3p/HMGB3轴对胃癌进展的积极作用,为circDOCK1 成为胃癌治疗的潜在分子靶点提供了新的证据。

综上所述, circDOCK1靶向miR-128-3p调控 HMGB3, 进而促进胃癌细胞生长和转移。本研究结 果显示, 靶向抑制 circDOCK1可能是缓解胃癌进展 的有效措施,且 circDOCK1/miR-128-3p/HMGB3轴 的提出可能为胃癌治疗提供新思路。

参考文献 (References)

- PATEL M, ARORA A, MUKHERJEE D, et al. Effect of hyperthermic intraperitoneal chemotherapy on survival and recurrence rates in advanced gastric cancer: a systematic review and metaanalysis [J]. Int J Surg, 2023, 109(8): 2435-50.
- [2] YAO M, MAO X, ZHANG Z, et al. Tumor-derived CircRNA_102191 promotes gastric cancer and facilitates M2 macrophage polarization [J]. Cell Cycle, 2023, 22(18): 2003-17.
- [3] LIU Y, CAO J, YANG Q, et al. CircRNA_15430 reduced by Helicobacter pylori infection and suppressed gastric cancer progression via miR-382-5p/ZCCHC14 axis [J]. Biol Direct, 2023, 18(1): 51.
- [4] MIAO Z, LI J, WANG Y, et al. Hsa_circ_0136666 stimulates gastric cancer progression and tumor immune escape by regulating the miR-375/PRKDC axis and PD-L1 phosphorylation [J]. Mol Cancer, 2023, 22(1): 205.
- [5] SHEN Y, ZHANG N, CHAI J, et al. CircPDIA4 induces gastric cancer progression by promoting ERK1/2 activation and enhancing biogenesis of oncogenic circRNAs [J]. Cancer Res, 2023, 83(4): 538-52.
- [6] MA Q, YANG F, HUANG B, et al. CircARID1A binds to IGF2BP3 in gastric cancer and promotes cancer proliferation by forming a circARID1A-IGF2BP3-SLC7A5 RNA-protein ternary complex [J]. J Exp Clin Cancer Res, 2022, 41(1): 251.
- [7] LI R, TIAN X, JIANG J, et al. CircRNA CDR1as: a novel diagnostic and prognostic biomarker for gastric cancer [J]. Biomarkers, 2023, 28(5): 448-57.
- [8] CUI W, XUE J. Circular RNA DOCK1 downregulates microR-NA-124 to induce the growth of human thyroid cancer cell lines [J]. Biofactors, 2020, 46(4): 591-9.
- [9] NI Z, LIU W, PAN G, et al. Circular forms of dedicator of cytokinesis 1 promotes breast cancer progression by derepressing never in mitosis related kinase 2 via sponging miR-128-3p [J]. Environ Toxicol, 2023, 38(7): 1712-22.
- [10] LI F, LI H, LI S, et al. Long non-coding RNA MIAT mediates non-small cell lung cancer development through regulating the miR-128-3p/PELI3 axis [J]. Biochem Genet, 2020, 58(6): 867-82.
- [11] DU X, LI Y, LIAN B, et al. microRNA-128-3p inhibits proliferation and accelerates apoptosis of gastric cancer cells via inhibition of TUFT1 [J]. World J Surg Oncol, 2023, 21(1): 47.
- [12] CHEN G, HAN P, ZHANG Q, et al. Circ_LDLR promotes the progression of papillary thyroid carcinoma by regulating miR-1294/HMGB3 axis [J]. J Biochem Mol Toxicol, 2023, 37(12): e23498.
- [13] WANG Y, LI H, CHEN W, et al. CircRUNX1 drives the malignant phenotypes of lung adenocarcinoma through mediating the miR-5195-3p/HMGB3 network [J]. Gen Thorac Cardiovasc Surg, 2024, 72(3): 164-75.
- [14] GUO S, WANG Y, GAO Y, et al. Knockdown of high mobility group-box 3 (HMGB3) expression inhibits proliferation, reduces migration, and affects chemosensitivity in gastric cancer cells [J]. Med Sci Monit, 2016, 22(1): 3951-60.
- [15] LI S, LIU F, ZHENG K, et al. CircDOCK1 promotes the tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/IGF1R axis [J]. Mol Cancer, 2021, 20(1): 161.
- [16] ZHANG W, WANG Z, CAI G, et al. Circ_DOCK1 regulates USP11 through miR-132-3p to control colorectal cancer progres-

sion [J]. World J Surg Oncol, 2021, 19(1): 67.

- [17] LIU P, LI X, GUO X, et al. Circular RNA DOCK1 promotes bladder carcinoma progression via modulating circDOCK1/hsamiR-132-3p/Sox5 signalling pathway [J]. Cell Prolif, 2019, 52(4): e12614-24.
- [18] WANG L, WEI Y, YAN Y, et al. CircDOCK1 suppresses cell apoptosis via inhibition of miR-196a-5p by targeting BIRC3 in OSCC [J]. Oncol Rep, 2018, 39(3): 951-66.
- [19] MORADIPOUR A, DARIUSHNEJAD H, AHMADIZADEH C, et al. Dietary flavonoid carvacrol triggers the apoptosis of human breast cancer MCF-7 cells via the p53/Bax/Bcl-2 axis [J]. Med Oncol, 2022, 40(1): 46.
- [20] WANG J, ZHANG M, HUANG X, et al. Multiproperty polyethylenimine-caged platinum nanoclusters promote apoptosis of osteosarcoma cells via regulating the Bax-Bcl-2/Caspase-3/PARP axis [J]. Mol Pharm, 2023, 20(11): 5607-15.
- [21] PENG L, WANG Y, LUO J, et al. miR-128-3p increases the radiosensitivity in nasopharyngeal carcinoma via regulating vascular endothelial growth factor C [J]. Pathol Res Pract, 2023, 249: 154768.
- [22] LI W, WU W. Circ_0005276 promotes prostate cancer progression through the crosstalk of miR-128-3p/DEPDC1B axis [J]. Biochem Genet, 2023, 61(5): 1987-2003.
- [23] WANG B, HANG J, LI W, et al. Knockdown of lncRNA DLEU2 inhibits cervical cancer progression via targeting miR-128-3p [J]. Onco Targets Ther, 2020, 13(1): 10173-84.
- [24] ZHAO J, LI D, FANG L. MiR-128-3p suppresses breast cancer

cellular progression via targeting LIMK1 [J]. Biomed Pharmacother, 2019, 115: 108947.

- [25] FANG W, SHI C, WANG Y, et al. microRNA-128-3p inhibits CD4⁺ regulatory T cells enrichment by targeting interleukin 16 in gastric cancer [J]. Bioengineered, 2022, 13(1): 1025-38.
- [26] WANG Q, ZHANG C, CAO S, et al. Tumor-derived exosomes orchestrate the microRNA-128-3p/ELF4/CDX2 axis to facilitate the growth and metastasis of gastric cancer via delivery of LINC01091 [J]. Cell Biol Toxicol, 2023, 39(2): 519-36.
- [27] JI R X, REN F, LIU X Q, et al. LncRNA FBXL19-AS1 promotes the development of gastric cancer by regulating miR-876-5p/HMGB3 axis [J]. J Biol Regul Homeost Agents, 2020, 34(4): 1513-8.
- [28] ZHANG Y, LIN W, JIANG W, et al. MicroRNA-18 facilitates the stemness of gastric cancer by downregulating HMGB3 though targeting Meis2 [J]. Bioengineered, 2022, 13(4): 9959-72.
- [29] KE Y, MAI J, LIU Z, et al. Interfering HMGB3 release from cancer-associated fibroblasts by miR-200b represses chemoresistance and epithelial-mesenchymal transition of gastric cancer cells [J]. J Gastrointest Oncol, 2022, 13(5): 2197-218.
- [30] CHEN X, ZHAO G, WANG F, et al. Upregulation of miR-513b inhibits cell proliferation, migration, and promotes apoptosis by targeting high mobility group-box 3 protein in gastric cancer [J]. Tumour Biol, 2014, 35(11): 11081-9.
- [31] SUN J, XIN K, LENG C, et al. Down-regulation of SNHG16 alleviates the acute lung injury in sepsis rats through miR-128-3p/HMGB3 axis [J]. BMC Pulm Med, 2021, 21(1): 191.