沉默circCCDC66靶向miR-129-5p对食管癌细胞 Eca-109增殖及凋亡的影响

李冬铭* 向可敏 魏云佳 (绵阳市人民医院胸外科, 绵阳 621000)

摘要 该文探讨了沉默 circCCDC66对食管癌细胞 Eca-109增殖及凋亡的影响及其可能作 用机制。qRT-PCR法与 Western blot法分别检测食管癌组织、癌旁组织中circCCDC66、miR-129-5p、HMGB1的表达量;体外培养人食管癌细胞Eca-109,将si-NC、si-circCCDC66、miR-NC、 miR-129-5p mimic、si-circCCDC66+miR-129-5p inhibitor分别转染至 Eca-109细胞;qRT-PCR法 与 Western blot法分别检测细胞中 circCCDC66、miR-129-5p、HMGB1的表达量;CCK-8法、平 板克隆形成实验与流式细胞术分别检测细胞增殖、集落形成数及细胞凋亡率;双荧光素酶报 告实验验证 circCCDC66与 miR-129-5p的靶向关系,以及 miR-129-5p与 HMGB1的靶向关系。食 管癌组织中 circCCDC66与 miR-129-5p的靶向关系,以及 miR-129-5p与 HMGB1的靶向关系。食 管癌组织中 circCCDC66、HMGB1的表达量高于癌旁组织(P<0.05),miR-129-5p的表达量低于 癌旁组织(P<0.05);转染 si-circCCDC66或转染 miR-129-5p mimic后 miR-129-5p的表达量、细 胞凋亡率、细胞增殖抑制率升高(P<0.05),而 HMGB1蛋白水平降低(P<0.05),集落形成数减少 (P<0.05); circCCDC66可靶向调控 miR-129-5p的表达,HMGB1是 miR-129-5p的靶基因;共转染 sicircCCDC66和iR-129-5p inhibitor可降低转染si-circCCDC66对Eca-109细胞增殖、集落形成、凋 亡的影响。沉默 circCCDC66可通过靶向调控 miR-129-5p/HMGB1表达而降低食管癌细胞增殖、 克隆形成能力,并可诱导细胞凋亡。

关键词 食管癌; circCCDC66; miR-129-5p; 细胞增殖; 凋亡

Effect of Silencing circCCDC66 on the Proliferation and Apoptosis of Esophageal Cancer Cells Eca-109 by Targeting miR-129-5p

LI Dongming*, XIANG Kemin, WEI Yunjia

(Department of Thoracic Surgery, Mianyang People's Hospital, Mianyang 621000, China)

Abstract In this paper, the effect of silencing circCCDC66 on the proliferation and apoptosis of Eca-109 in esophageal cancer cells and its possible mechanism were discussed. The expression of circCCDC66, miR-129-5p and HMGB1 in esophageal cancer tissues and adjacent tissues were detected by qRT-PCR and Western blot. Human esophageal cancer cells Eca-109 were cultures *in vitro*, si-NC, si-circCCDC66, miR-NC, miR-129-5p mimic, si-circCCDC66+miR-129-5p inhibitor were transfected into Eca-109 cells, respectively. The expression of circCCDC66, miR-129-5p and HMGB1 in cells were detected by qRT-PCR and Western blot, respectively. Cell proliferation, colony formation and apoptosis rate were detected by CCK-8 assay, plate clone formation as-

收稿日期: 2023-05-31 接受日期: 2023-07-17

四川省科技计划项目(批准号: 2019YFQ0003)资助的课题

^{*}通讯作者。Tel: 18781606365, E-mail: fang_7761@163.com

Received: May 31, 2023 Accepted: July 17, 2023

This work was supported by the Sichuan Science and Technology Planning Project (Grant No.2019YFQ0003)

^{*}Corresponding author. Tel: +86-18781606365, E-mail: fang_7761@163.com

say and flow cytometry, respectively. The targeting relationship between circCCDC66 and miR-129-5p, and the targeting relationship between miR-129-5p and HMGB1 were verified by dual luciferase report experiment. The expression levels of circCCDC66 and HMGB1 in esophageal cancer tissues were higher than those in paracancer tissues (P<0.05), while the expression of miR-129-5p was lower than those in paracancer tissues (P<0.05). After transfection with si-circCCDC66 or miR-129-5p mimic, the expression of miR-129-5p, the rate of apoptosis, and the inhibition rate of cell proliferation were increased (P<0.05), while the expression of miR-129-5p mimic, the protein level of HMGB1 and the number of colonies formed were decreased (P<0.05). circCCDC66 could target and regulate the expression of miR-129-5p, and *HMGB1* is the target gene of miR-129-5p. Co-transfection of si-circCCDC66 and miR-129-5p inhibitor could reduce the effect of transfection of si-circCCDC66 on the proliferation, clone formation and apoptosis of Eca-109 cells. Silencing circCCDC66 can reduce the proliferation and clonal formation ability of esophageal cancer cells and induce cell apoptosis by targeting the expression of miR-129-5p/*HMGB1*.

Keywords esophageal cancer; circCCDC66; miR-129-5p; cell proliferation; apoptosis

环状RNA(circular RNA, circRNA)具有稳定 性与组织特异性,研究表明 circRNA在食管癌中表 达上调或下调,并可通过充当微小RNA(miRNA) 的海绵分子而调节食管癌细胞增殖、凋亡等生物 学行为^[1-4]。最近我们注意到 circCCDC66在人类 肿瘤中过表达,特别是在胃肠道恶性肿瘤中[5-6]。 circCCDC66起源于CCDC66基因的8、9外显子, 位于 chr3:56626997-56628056位点, 全长 468 nt。 YANG等^[5]报道circCCDC66可促进胃癌的增殖和 侵袭。对于结肠癌, HSIAO等⁶⁰注意到 circCCDC66 促进了结肠癌细胞的生长和转移。但circCCDC66 在食管癌中的表达及其可能作用机制尚未可知。 Starbase预测显示 circCCDC66与 miR-129-5p存在结 合位点,研究表明,食管鳞状细胞癌中miR-129-5p呈 低表达,上调miR-129-5p可抑制细胞增殖及侵袭^[7]。 Targetscan预测显示miR-129-5p与高迁移率族蛋白 B1(high mobility group protein B1, HMGB1)存在互 补的核苷酸位点。抑制HMGB1表达可诱导食管癌 细胞凋亡^[8]。因此,本研究主要探讨 circCCDC66是 否通过调节miR-129-5p/HMGB1表达来影响食管癌 的发生及发展。

1 材料与方法

1.1 材料

1.1.1 组织 收集2019年6月-2020年11月于本院 进行手术治疗的食管癌患者的癌组织(*n*=27)及其相 应癌旁组织(*n*=27)标本,置于-80°C超低温冰箱内保 存,其中女10例,男17例,年龄在50至67岁之间,平均 年龄(55.38±4.11)岁。所有参与者都签署了知情同意 书。本研究经绵阳市人民医院伦理委员会审批,其 批准号为2019051502。

1.1.2 主要试剂 人食管癌 Eca-109细胞购自美国 ATCC; CCK-8试剂购自上海碧云天生物技术有 限公司; Annexin -VFITC/PI调亡检测试剂盒购自 北京索莱宝科技有限公司; RNA提取试剂购自北 京全式金生物技术有限公司; Lipofectamine 2000 购自美国Invitrogen公司;反转录试剂、荧光定量 PCR试剂购自美国ThermoFisher公司; circCCDC66 小干扰 RNA(si-circCCDC66 1, 5'-CAA UUA GAG CAU CAG GAA A-3'; si-circCCDC66 2, 5'-GAG CAU CAG GAA ACA GUA C-3'; si-circCCDC66 3, 5'-CAA UUA GAG CAU CAG GAA ATT-3')及其阴 性对照(si-NC, 5'-UUC UCC GAA CGU GUC ACG UTT-3')、miR-129-5p 模拟物(mimic)、miR-NC、 miR-129-5p 抑制剂(inhibitor)购自广州锐博生物科 技有限公司; HRP标记的山羊抗兔IgG二抗购自美 国Abcam公司; 兔抗人HMGB1多克隆抗体购自北 京冬歌博业生物科技有限公司。

1.2 方法

1.2.1 RNase R和放线菌素D处理 总RNA(2 μg) 与3 U/mg的RNase R在37 °C孵育15 min。采用qRT-PCR检测 circCCDC66等 RNA的表达情况。用放 线菌素 D或 DMSO处理食管癌 Eca-109细胞,评价 circCCDC66及其线性基因 CCDC66的稳定性。采用 qRT-PCR检测RNA的稳定性。

1.2.2 实验分组 用不含血清的培养基稀释Lipofectamine 2000和不含血清的培养基分别稀释si-NC、 si-circCCDC66、miR-NC、miR-129-5p mimic、sicircCCDC66+miR-129-5p inhibitor, 培养5 min, 转染物稀释液与转染试剂充分混匀后室温孵育20 min, 同时将Eca-109细胞(2×10⁵个/mL)按照每孔100 μL接种于6孔板中,将上述混合液按照每孔200 μL均匀加入6孔板的细胞中,培养48 h,分别记为si-NC组、si-circCCDC66组、miR-NC组、miR-129-5p mimic组、si-circCCDC66+miR-129-5p inhibitor组。同时将正常培养的Eca-109细胞记为control组。

1.2.3 qRT-PCR检测 circCCDC66、miR-129-5p表达 情况 用Trizol试剂在食管癌细胞和组织中提取 RNA,反转录后进行PCR扩增反应。反应条件:95 ℃ 预变性2 min; 95 °C变性30 s, 60 °C退火30 s, 72 °C延 伸30 s, 共40个循环。应用罗氏LightCycler480荧光 定量PCR仪检测Ct值并采用2-44Ct法计算其相对表 达。所用引物序列为: circCCDC66正向5'-TCT CTT GGA CCC AGC TCA G-3',反向5'-TGA ATC AAA GTG CAT TGC CC-3'; miR-129-5p正向5'-CGG CGG TTT TTT GCG GTC TGG GCT-3';反向5'-AGC CCA GAC CGC AAA AAA CCG CCG-3'; GAPDH正向5'-GGA GCG AGA TCC CTC CAA AAT-3',反向5'-GGC TGT TGT CAT ACT TCT CAT GG-3'; U6正向5'-CTC GCT TCG GCA GCA CA-3',反向5'-AAC GCT TCA CGA ATT TGC GT-3'。

1.2.4 CCK-8检测Eca-109细胞增殖 将Eca-109细胞增殖 胞(2×10⁴个/mL)接种至96孔板(100 μL/孔)中,并置于 37°C、5% CO₂培养2天。检测前2h,在孔中添加10μL CCK-8溶液,在450 nm波长处记录光密度(D)值。

1.2.5 平板克隆形成实验 首先将细胞接种到6孔 板中,每孔500个细胞,培养14天。随后,用甲醇在室 温下固定细胞20 min,用1%结晶紫染色15 min。去 除染色液后,将形成的菌落晾干,显微镜下观察并统 计克隆形成数。

 1.2.6 流式细胞术检测Eca-109细胞凋亡率 严格 按照 Annexin V-FITC/PI凋亡检测试剂盒,用5 μL Annexin V-FITC与5 μL PI在黑暗中室温下孵育转染细胞
10 min。采用FACS Calibur流式细胞仪评估细胞凋亡 情况。

1.2.7 双荧光素酶报告实验证实miR-129-5p与 circCCDC66、*HMGB1*的靶向关系 Starbase 预测显示circCCDC66与miR-129-5p存在结合位 点,Targetscan预测显示miR-129-5p与HMGB1存 在结合位点,由美国Promega公司设计合成含有 circCCDC66与miR-129-5p结合位点的野生型载体WT-circCCDC66与含有其突变位点的突变型载体MUT-circCCDC66,同时设计合成含有miR-129-5p与HMGB1结合位点的野生型载体WT-HMGB1与含有其突变位点的突变型载体MUT-HMGB1,用脂质体转染法将WT-circCCDC66、MUT-circCCDC66、WT-HMGB1、MUT-HMGB1分别与miR-NC或miR-129-5pminic共转染至Eca-109细胞,于37°C、5%CO₂体积分数培养箱内继续培养48h后,检测其荧光素酶活性。

1.2.8 Western blot评估HMGB1蛋白表达情况 用 蛋白裂解液提取癌旁组织、食管癌组织与各组Eca-109细胞总RNA,每孔道加入40μg蛋白样品。蛋 白质用10% SDS-PAGE分离,转移至PVDF膜上。 PVDF膜在室温下用脱脂牛奶封闭2h,然后在4°C下 与HMGB1一抗(1:800)与内参GAPDH抗体(1:1000) 孵育过夜。随后,将膜与二抗(1:5000)浸泡1h。最后, 应用ImageJ软件分析各蛋白水平。

1.3 统计学分析

所有统计分析均采用 SPSS 21.0软件进行,符 合正态分布的计量资料表示为均数±标准差(x±s)。 Person相关性检验分析食管癌中 circCCDC66、miR-129-5p、HMGB1的相关性。两组间差异比较行独立 样本*t*检验,多组间差异比较行单因素方差分析,两 两比较行 LSD-*t*检验。*P*<0.05为差异具有统计学意 义。

2 结果

2.1 食管癌中circCCDC66的稳定性

由于圆形异构体的高稳定性,在Eca-109细胞中,circCCDC66的半衰期超过24h(图1)。此外,与Mock组相比,RNase R组CCDC66mRNA的相对丰度明显降低,circCCDC66的相对丰度基本没有变化,证实了circCCDC66是环状的(图2)。我们发现circCCDC66由于其圆形结构,比CCDC66更稳定。这些结果表明,circCCDC66是一个稳定的circRNA,且在食管癌细胞中表达。

2.2 食管癌中circCCDC66、miR-129-5p、HMGB1 的表达情况

食管癌组织与癌旁组织比较,circCCDC66、 HMGB1表达水平升高,miR-129-5p表达水平下 降(P<0.05,图3)。相关性分析结果显示,食道癌中

*P<0.05,与CCDC66相比。

 $^{\#}P < 0.05$ compared with CCDC66.

图1 qRT-PCR检测经放线菌素D处理的Eca-109细胞在指定时间点的circCCDC66和CCDC66 mRNA丰度 Fig.1 mRNA abundance of circCCDC66 and CCDC66 in Eca-109 cells treated with actinomycin D was detected by qRT-PCR

#P<0.05,与Mock相比。

 $^{\#}P < 0.05$ compared with Mock.

circCCDC66与miR-129-5p表达呈负相关(*r*=-0.655, *P*<0.05), miR-129-5p与HMGB1表达呈负相关(*r*=-0.756, *P*<0.05)。

2.3 沉默circCCDC66对Eca-109增殖、凋亡的影响

与si-NC组比较, si-circCCDC66 1组、sicircCCDC66 2组、si-circCCDC66 3组circCCDC66 表达量下降(P<0.05, 图4)。由图4和图5可知, sicircCCDC66组与control组、si-NC组比较, miR-129-5p的表达水平升高(P<0.05), HMGB1蛋白 表达水平降低(P<0.05), 细胞增殖抑制率升高 (P<0.05), 集落形成数减少(P<0.05), 细胞凋亡率升 高(P<0.05)。

2.4 circCCDC66靶向miR-129-5p及miR-129-5p 靶向HMGB1

Starbase预测显示miR-129-5p是circCCDC66的 可能靶点(图6A)。与miR-NC组比较,miR-129-5p 组WT-circCCDC66细胞的相对荧光素酶活性下降 (P<0.05,图6B)。Targetscan预测显示miR-129-5p与 HMGB1存在互补的核苷酸位点(图6C)。与miR-NC 组比较,miR-129-5p组WT-HMGB1细胞相对荧光素 酶活性下降(P<0.05,图6B)。

2.5 miR-129-5p过表达对Eca-109增殖、凋亡的 影响

由图7可知, miR-129-5p mimic组与control组、

图2 qRT-PCR检测加RNase R和不加RNase R处理后Eca-109细胞中circCCDC66和CCDC66 mRNA的相对丰度 Fig.2 The relative abundance of circCCDC66 and CCDC66 mRNA in Eca-109 cells treated with and without RNase R was determined by qRT-PCR

A: 食管癌中circCCDC66表达情况比较; B: 食管癌中miR-129-5p表达情况比较; C: 食管癌中HMGB1蛋白表达情况比较; *P<0.05, 与癌旁组织相比。C: 癌组织; N: 癌旁组织。

A: comparison of circCCDC66 expression in esophageal cancer; B: comparison of miR-129-5p expression in esophageal cancer; C: comparison of HMGB1 protein expression in esophageal cancer; $^{\#}P$ <0.05 compared with para-carcinoma tissue. C: carcinoma tissue; N: para-carcinoma tissue.

图3 食管癌中circCCDC66、miR-129-5p、HMGB1的表达

Fig.3 Expression of circCCDC66, miR-129-5p and HMGB1 in esophageal cancer

*P<0.05, 与si-NC组相比。</p>*P<0.05 compared with si-NC group.</p>

图4 沉默circCCDC66处理后沉默circCCDC66表达的检测 Fig.4 Detection of silenced circCCDC66 expression after silenced circCCDC66 treatment

A: the effect of circCCDC66 silencing on circCCDC66 expression in Eca-109 cells; B: the effect of silencing circCCDC66 on miR-129-5p expression in Eca-109 cells; C: silencing the effect of circCCDC66 on the proliferation inhibition rate of Eca-109 cells; D: the effect of silencing circCCDC66 on HMGB1 protein expression in Eca-109 cells; E: silencing the effect of circCCDC66 on apoptosis of Eca-109 cells; F: silencing the effect of circCCDC66 on the clonal formation of Eca-109 cells; *P<0.05 compared with the control group; *P<0.05 compared with si-NC group.

图5 沉默circCCDC66对Eca-109增殖、凋亡的影响 Fig.5 The effect of silencing circCCDC66 on proliferation and apoptosis of Eca-109

A: circCCDC66和miR-129-5p的互补序列; B: miR-129-5p和HMGB1的互补序列; C: 相对荧光素酶活性比较; 红色碱基为突变碱基; *P<0.05, 与 miR-NC组比较。

A: complementary sequence of circCCDC66 and miR-129-5p; B: complementary sequence of miR-129-5p and HMGB1; C: comparison of relative luciferase activity; the red base is the mutant base; *P < 0.05 compared with miR-NC group.

图6 双荧光素酶报告实验

(A) (B) (C) evel of miR-129-5n 0.1 80 0.8 4. 60 3-0.6 40 HMGB1 2-0.4 dinhi £ 0.2 GAPDH elativ Selative Control miR-NC miR-129-5p mimic Control miR-NC miR-129-5p mimic Control miR-NC miR-129-5p mimic (D) Control miR-NC miR-129-5p mimic 30 1(10 10 0.31% 4 66% 0.30% 4 66% 0.91% 17.69% Apoptosis rate /% 10 10 10 ☑ 10² Ы 10 ⊡ 10² 10¹ 10 10 1.85% 93 1.84% 6.78% 100 10 10 101 103 103 10^{0} 10² 10¹ 10² 10³ Annexin V-FITC 10 10^{0} 10^{1} 10^{2} 10^{0} 10 10 0 Annexin V-FITC Annexin V-FITC Control miR-NC miR-129-5p mimic Number of colonies formed (individual) 0.00 0.01 0.02 0. (E) Control miR-NC miR-129-5p mimic Control miR-NC miR-129-5p mimic

Fig.6 Double luciferase reporting experiments

A: 过表达miR-129-5p对Eca-109细胞miR-129-5p表达的影响; B: 过表达miR-129-5p对Eca-109细胞HMGB1蛋白表达的影响; C: 过表达miR-129-5p对Eca-109细胞增殖抑制率的影响; D: 过表达miR-129-5p对Eca-109细胞调亡的影响; E: 过表达miR-129-5p对Eca-109细胞克隆形成的影响; *P<0.05, 与control组相比; *P<0.05, 与miR-NC组相比。

A: the effect of overexpression of miR-129-5p on the expression of miR-129-5p in Eca-109 cells; B: the effect of overexpression of miR-129-5p on HMGB1 protein expression in Eca-109 cells; C: the effect of overexpression of miR-129-5p on proliferation inhibition rate of Eca-109 cells; D: the effect of overexpression of miR-129-5p on apoptosis of Eca-109 cells; E: the effect of overexpression of miR-129-5p on the clonal formation of Eca-109 cells; *P<0.05 compared with the control group; *P<0.05 compared with miR-NC group.

图7 过表达miR-129-5p对Eca-109增殖、凋亡的影响

Fig.7 The effect of overexpression of miR-129-5p on proliferation and apoptosis of Eca-109

A:抑制miR-129-5p逆转了沉默circCCDC66对Eca-109细胞miR-129-5p表达的影响; B:抑制miR-129-5p逆转了沉默circCCDC66对Eca-109细胞增殖抑制率的影响; D:抑制miR-129-5p逆转了沉默 circCCDC66对Eca-109细胞增殖抑制率的影响; D:抑制miR-129-5p逆转了沉默 circCCDC66对Eca-109细胞调亡的影响; E:抑制miR-129-5p逆转了沉默circCCDC66对Eca-109细胞克隆形成的影响; *P<0.05,与control组相比; *P<0.05,与si-circCCDC66组相比。

A: inhibition of miR-129-5p reversed the effect of circCCDC66 silencing on the expression of miR-129-5p in Eca-109 cells; B: inhibition of miR-129-5p reversed the effect of circCCDC66 on HMGB1 protein expression in Eca-109 cells; C: inhibition of miR-129-5p reversed the effect of circCCDC66 or apoptosis of Eca-109 cells; D: inhibition of miR-129-5p reversed the effect of circCCDC66 on apoptosis of Eca-109 cells; E: inhibition of miR-129-5p reversed the effect of circCCDC66 silencing on the formation of Eca-109 cell clones; *P < 0.05 compared with the control group; *P < 0.05 compared with si-circCCDC66 group.

图8 抑制miR-129-5p可逆转沉默circCCDC66对Eca-109增殖、凋亡的检测 Fig.8 Inhibition of miR-129-5p can reverse the effects of circCCDC66 silencing on proliferation and apoptosis of Eca-109

miR-NC组比较, HMGB1蛋白水平降低(P<0.05), 细胞增殖抑制率升高(P<0.05), 集落形成数减少(P<0.05), 细胞调亡率升高(P<0.05)。

2.6 抑制 miR-129-5p 对沉默 circCCDC66处理的 Eca-109 增殖、凋亡的影响

由图 8可知,与 si-circCCDC66组比较, sicircCCDC66+miR-129-5p inhibitor组HMGB1蛋白 水平升高(P<0.05),细胞增殖抑制率降低(P<0.05), 集落形成数增多(P<0.05),细胞凋亡率降低(P<0.05)。

3 讨论

结直肠癌中circCCDC66的表达上调,敲低 circCCDC66的表达可阻碍结直肠癌的增殖、迁移 侵袭,并可促进细胞凋亡^[9-10]。circCCDC66在胃癌组 织与细胞系中表达水平升高,其高表达量与患者肿 瘤分期、淋巴转移有关^[11]。甲状腺癌组织和细胞系 中circCCDC66的表达量升高,沉默circCCDC66可抑 制甲状腺癌细胞增殖、迁移、侵袭及糖酵解^[12]。以 上研究说明,circCCDC66在肿瘤细胞中高表达,推 测这与肿瘤细胞的高转移和高侵袭能力相关。但 食管癌中circCCDC66的表达仍不明确。本研究发 现,circCCDC66在食管癌组织中表达水平升高,进 一步研究发现,沉默circCCDC66后食管癌细胞增 殖抑制率、凋亡率升高,而集落形成数减少,提示 沉默circCCDC66可抑制食管癌细胞增殖、克隆形 成及促进细胞凋亡,这与其在甲状腺癌中的功能一 致^[13],说明circCCDC66在头颈部癌症中均发挥促癌 作用。

本研究证实, circCCDC66可充当miR-129-5p 的海绵分子, HMGB1是miR-129-5p的靶基因, 推断 circCCDC66/miR-129-5p/HMGB1与食管癌发展密 切相关。研究表明, miR-129-5p通过抑制COL1A1 表达而抑制胃癌细胞侵袭和增殖^[14]。miR-129-5p 通过靶向ETV1抑制前列腺癌细胞增殖^[15]。miR-129-5p通过靶向RSF1抑制结肠癌细胞增殖并促进 凋亡^[16]。HMGB1属于DNA结合非组蛋白,其具有 稳定核小体并具有转录功能,并可参与神经轴突生 长与肿瘤转移等生理病理过程^[17]。lncRNA ZEB2-AS1通过抑制miR-204表达而促进HMGB1表达进 而促进胰腺癌细胞生长和侵袭^[18]。lncRNA KTN1-AS1通过靶向miR-505上调HMGB1促进胶质瘤细 胞增殖^[19]。本研究结果显示,食管癌组织中miR-129-5p的表达量降低,而HMGB1的表达量升高,沉 默circCCDC66可通过靶向促进miR-129-5p表达而 抑制HMGB1表达, miR-129-5p过表达可通过靶向 下调HMGB1表达降低食管癌细胞增殖、克隆形 成能力,提高细胞凋亡能力。此外,抑制miR-129-5p表达可回复沉默 circCCDC66抑制食管癌细胞增 殖、克隆形成的作用及促进凋亡的作用。这提示 circCCDC66可通过靶向调节miR-129-5p/HMGB1 表达而促进食管癌细胞增殖及克隆形成,进而抑制 细胞凋亡。生物信息学预测和既往发表的文献显示, circCCDC66还有miR-370、miR-211-5p等靶miRNA 分子^[10,12],说明在食管癌进展中circCCDC66可能通 过其他miRNA发挥作用;同时miR-129-5p的下游靶 基因还有ETV1、RSF1^[15-16],这说明circCCDC66/miR-129-5p可能通过影响其他靶基因表达调控食管癌细 胞进展。

综上所述,食管癌组织中circCCDC66与HMGB1 上调表达,miR-129-5p下调表达,沉默circCCDC66可 抑制食管癌细胞增殖、促进细胞凋亡,这可能是通过 提高miR-129-5p表达而降低HMGB1的表达实现的。 但circCCDC66是否可通过调控其他miRNA/mRNA而 发挥作用尚需进一步探究。另外,本研究仅采用一 种食管癌细胞株进行功能验证,这是我们的不足之 处,未来将在其他食管癌细胞株中验证circCCDC66 的功能和机制。

参考文献 (References)

- ZHANG Z, LIN W, GAO L, et al. Hsa_circ_0004370 promotes esophageal cancer progression through miR-1294/LASP1 pathway [J]. Biosci Rep, 2019, 39(5): 1-12.
- [2] MA Y, ZHANG D, WU H, et al. Circular RNA PRKCI silencing represses esophageal cancer progression and elevates cell radiosensitivity through regulating the miR-186-5p/PARP9 axis [J]. Life Sci, 2020, 259(1): 118168-78.
- [3] LIU Z, HU G, ZHAO Y, et al. Silence of cZNF292 suppresses the growth, migration, and invasion of human esophageal cancer Eca-109 cells via upregulating miR-206 [J]. J Cell Biochem, 2020, 121(3): 2354-62.
- [4] XIE Z F, LI H T, XIE S H, et al. Circular RNA hsa_circ_0006168 contributes to cell proliferation, migration and invasion in esophageal cancer by regulating miR-384/RBBP7 axis via activation of S6K/S6 pathway [J]. Eur Rev Med Pharmacol Sci, 2020, 24(1): 151-63.
- [5] XU G, CHEN Y, FU M, et al. Circular RNA CCDC66 promotes gastric cancer progression by regulating c-Myc and TGF-β signaling pathways [J]. J Cancer, 2020, 11(10): 2759-68.
- [6] HSIAO K Y, LIN Y C, GUPTA S K, et al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis [J]. Cancer Res, 2017, 77(9): 2339-50.
- [7] WANG H, LI H, YU Y, et al. Long non-coding RNA XIST promotes the progression of esophageal squamous cell carcinoma through sponging miR-129-5p and upregulating CCND1 expression [J]. Cell Cycle, 2021, 20(1): 39-53.
- [8] ZHANG X, YANG X, ZHU S, et al. Radiosensitization of esophageal carcinoma cells by knockdown of HMGB1 expression [J]. Oncol Rep, 2019, 41(3): 1960-70.
- [9] FENG J, LI Z, LI L, et al. Hypoxia-induced circCCDC66 promotes the tumorigenesis of colorectal cancer via the miR-3140/autophagy pathway [J]. Int J Mol Med, 2020, 46(6): 1973-82.
- [10] MO Y, LU Q, ZHANG Q, et al. Circular RNA CCDC66 improves murine double minute 4 (MDM4) expression through targeting miR-370 in colorectal cancer [J]. Comput Math Methods Med, 2022, 2022: 7723995.
- [11] XU G, CHEN Y, FU M, et al. Circular RNA CCDC66 promotes gastric cancer progression by regulating c-Myc and TGF-beta signaling pathways [J]. J Cancer, 2020, 11(10): 2759-68.
- [12] REN H, SONG Z, CHAO C, et al. circCCDC66 promotes thyroid cancer cell proliferation, migratory and invasive abilities and glycolysis through the miR-211-5p/PDK4 axis [J]. Oncol Lett,

2021, 21(5): 416-26.

- [13] LI P, CHEN J, ZOU J, et al. Circular RNA coiled-coil domain containing 66 regulates malignant development of papillary thyroid carcinoma by upregulating La ribonucleoprotein 1 via the sponge effect on miR-129-5p [J]. Bioengineered, 2022, 13(3): 7181-96.
- [14] WANG Q, YU J. MiR-129-5p suppresses gastric cancer cell invasion and proliferation by inhibiting COL1A1 [J]. Biochem Cell Biol, 2018, 96(1): 19-25.
- [15] GAO G, XIU D, YANG B, et al. miR-129-5p inhibits prostate cancer proliferation via targeting ETV1 [J]. Onco Targets Ther, 2019, 12(1): 3531-44.
- [16] HAO J, WEI H, QI Y, et al. miR-129-5p plays an anticancer role in colon cancer by targeting RSF1 [J]. Cell Mol Biol, 2022, 67(5): 196-201.
- [17] LI Y, QIN C. MiR-1179 inhibits the proliferation of gastric cancer cells by targeting HMGB1 [J]. Hum Cell, 2019, 32(3): 352-9.
- [18] GAO H, GONG N, MA Z, et al. LncRNA ZEB2-AS1 promotes pancreatic cancer cell growth and invasion through regulating the miR-204/HMGB1 axis [J]. Int J Biol Macromol, 2018, 116(1): 545-51.
- [19] GUO K, FANG L, LI M, et al. Long non-coding RNA KTN1-AS1 targets miR-505 to promote glioblastoma progression [J]. Behav Neurol, 2023, 2023: 4190849.