依托咪酯调节cGAS-STING信号通路对子宫内膜癌 细胞增殖、迁移和免疫逃逸的影响

陈垂凯1* 王庆1 王小花2

('海南省妇女儿童医学中心麻醉科,海口 570100; '海南省妇女儿童医学中心妇科,海口 570100)

摘要 该文探讨依托咪酯(Eto)通过调节环磷酸鸟苷-腺苷酸合成酶(cGAS)-干扰素基因刺激因子(STING)信号通路对子宫内膜癌细胞增殖、迁移和免疫逃逸的影响。用10、20、40 μg/mL Eto处理人子宫内膜癌细胞株HEC-1-A,并将其分别标记为Eto低、中、高浓度组,未经处理的HEC-1-A细胞作为对照组,同时在Eto高浓度的基础上,加入1 μmol/L cGAS抑制剂RU.521处理HEC-1-A 细胞,记为Eto高浓度+RU.521组;MTT法及流式细胞术检测各组HEC-1-A细胞的增殖、凋亡情况;Transwell实验检测各组HEC-1-A细胞的迁移情况;Western bolt法检测各组HEC-1-A细胞中 cGAS、STING以及免疫逃逸蛋白PD-L1的表达水平;将各组细胞接种在小鼠右背部以构建子宫内膜细胞癌移植瘤模型,饲养小鼠4周后,分离肿瘤并称重,通过免疫组化法测定组织中CD8⁺T细胞浸润数。结果显示,与对照组相比,Eto低、中、高浓度组HEC-1-A细胞凋亡率、CD8⁺T细胞浸润数以及 cGAS蛋白、STING蛋白表达水平增加,HEC-1-A细胞增殖率、迁移数、PD-L1表达水平、肿瘤质量显著降低,呈现浓度依赖性(P<0.05)。与Eto高浓度组相比,Eto高浓度+RU.521组细胞HEC-1-A细胞增殖率、迁移数、PD-L1表达水平、肿瘤质量显著增加(P<0.05)。总之,Eto通过调节激活cGAS-STING信号通路抑制子宫内膜癌细胞增殖、迁移和免疫逃逸,诱导其凋亡。

关键词 依托咪酯; cGAS-STING信号通路; 子宫内膜癌; 增殖; 迁移; 免疫逃逸

Impacts of Etomidate on the Proliferation, Migration and Immune Escape of Endometrial Cancer Cells by Regulating cGAS-STING Signal Pathway

CHEN Chuikai^{1*}, WANG Qing¹, WANG Xiaohua²

(¹Department of Anesthesia, Hainan Women and Children's Medical Center, Haikou 570100, China; ²Department of Gynecology, Hainan Women and Children's Medical Center, Haikou 570100, China)

Abstract This paper aimed to investigate the effects of Eto (etomidate) on the proliferation, migration and immune escape of endometrial cancer cells by regulating the cGAS (cyclic guanosine-adenosine synthetase)-STING (interferon gene stimulating factor) signal pathway. Human endometrial cancer cell line HEC-1-A was treated with 10, 20, and 40 µg/mL Eto and labeled as low, medium, and high concentration Eto groups, and untreat-ed HEC-1-A cells were used as control group. Meantime, on the basis of Eto high concentration, 1 µmol/L cGAS inhibitor RU.521 was added to treat HEC-1-A cells, which was recorded as Eto high concentration+RU.521 group. The proliferation and apoptosis of HEC-1-A cells in each group were detected by MTT method and flow cytometry. Transwell test was applied to detect the migration of HEC-1-A cells in each group. The expression levels of

收稿日期: 2023-04-10 接受日期: 2023-05-05

*通讯作者。Tel: 18608926953, E-mail: kkvbg45@163.com

Received: April 10, 2023 Accepted: May 5, 2023

^{*}Corresponding author. Tel: +86-18608926953, E-mail: kkvbg45@163.com

cGAS, STING and PD-L1 (immune escape protein) in HEC-1-A cells were detected by Western blot. The cells of each group were inoculated into the right back of mice to build a model of endometrial cell carcinoma transplanted tumor. After 4 weeks of feeding, the tumors were separated and weighed, and the number of CD8⁺T cells in the tissues was determined by immunohistochemistry. The results show that compared with the control group, the apoptosis rate of HEC-1-A cells, the infiltration number of CD8⁺T cells, the expression of cGAS and STING proteins in the Eto low, medium and high concentration groups increased, while the proliferation rate, migration number, expression of PD-L1 of HEC-1-A cells, and tumor mass were obviously decreased, in a concentration-dependent manner (P<0.05). Compared with Eto high concentration group, the apoptosis rate of HEC-1-A cells, the infiltration number, expression of CD8⁺T cells, the expression of cGAS and STING proteins in Eto high concentration+RU.521 group decreased, while the proliferation rate, migration number, expression of PD-L1 of HEC-1-A cells, and and tumor mass were obviously increased (P<0.05). In short, Eto can inhibit the proliferation, migration and immune escape of endometrial cancer cells and induce their apoptosis by regulating and activating the cGAS-STING signal pathway.

Keywords etomidate; cGAS-STING signal pathway; endometrial carcinoma; proliferation; migration; immune escape

子宫内膜癌是最常见的原发性女性肿瘤之一, 具有极高的发病率和死亡率^[1]。大多数患有子宫腺 肌病的妇女是无症状的,部分患者可能会表现出一 系列症状,如痛经、子宫异常出血和不孕症等,目 前手术切除是子宫内膜癌的首选治疗方法,然而由 于肿瘤生长快、侵袭性强、易复发等原因,单纯手 术很难完全切除肿瘤[2],因此迫切需要为子宫内膜 癌的治疗开发新方案。依托咪酯(Eto)是一种常用 的静脉麻醉药, Eto在麻醉期间可维持良好的血液动 力学稳定性^[3]。研究表明, Eto具有抗氧化、抗炎、 抗肿瘤和抗血小板聚集的作用^[4],此外Eto在癌症中 可发挥抑癌作用,如刘璐等^[5]研究证明,Eto可抑制 人子宫内膜癌KLE细胞增殖,促进其调亡,但其作 用机制尚不清楚。磷酸鸟苷-腺苷酸合成酶(cyclic guanosine monophosphate-adenosine monophosphate synthase, cGAS)是一种胞质 DNA传感器, 可针对病 毒等微生物病原体的入侵通过作用于干扰素基因刺 激因子(stimulator of interferon genes, STING)作出免 疫反应,研究证明cGAS-STING通路是中枢细胞胞 质双链DNA传感器,可使先天免疫对感染、炎症作 出反应,且激活该通路在肿瘤细胞和免疫细胞中发 挥着至关重要的作用^[6]。先前研究表明, 激活cGAS-STING信号可促进非小细胞肺癌中NK细胞的浸润 和抗肿瘤免疫^[7]。但Eto通过调节cGAS-STING通路 对子宫内膜癌细胞的作用尚不清楚,本研究旨在探 讨Eto通过调节cGAS-STING信号通路对子宫内膜

癌细胞增殖、迁移和免疫逃逸的影响。

1 材料与方法

1.1 细胞来源

中国科学院上海细胞库提供人子宫内膜癌细胞 株 HEC-1-A, HEC-1-A细胞被置于 RPMI-1640培养基 (含10%胎牛血清)中,在37°C、5% CO₂条件下孵育。

广东维通利华实验动物技术有限公司提供50 只4周龄的C57BL/6雄性小鼠,体质量为16~20 g,生 产许可证号为SCXK(粤)2022-0063,小鼠均饲养在 温度为(23.5±1.5)°C,湿度为(55±5)%的动物房中。 所有动物实验已获得海南省妇女儿童医学中心动物 伦理委员会的批准(批号: 2022021006),且所有关于 动物实验的操作均严格按照动物保护与使用委员会 的指导原则进行。

1.2 主要材料、仪器

依托咪酯(Eto)购自美国Sigma公司; cGAS抑制 剂RU.521购自Selleckchem公司; MTT溶液购自上海 哈灵生物科技有限公司; AnnexinV-FITC/PI细胞凋 亡检测试剂盒购自德国Merck公司; 通用SP检测试 剂盒购自北京索莱宝科技有限公司; cGAS、STING 以及免疫逃逸蛋白PD-L1一抗及兔源抗小鼠CD8抗 体购自Abcam公司。

酶标仪购自Bio-Tek公司; FACScan流式细胞仪购 自Becton公司; 光学显微镜购自Olympus Corporation; 恒温培养箱购自苏州贝锐仪器科技有限公司。

1.3 细胞分组及处理

取对数生长期HEC-1-A细胞,用10、20、40 μg/mL Eto处理HEC-1-A,并将其分别标记为Eto低、中、高浓 度组^[8],未经处理的HEC-1-A细胞作为对照组,同时在 Eto高浓度的基础上,加入1 μmol/L cGAS抑制剂RU.521 处理HEC-1-A细胞,记为Eto高浓度+RU.521组^[9];上述 各组HEC-1-A细胞经常规培养48 h后进行分析。

1.4 MTT法检测各组HEC-1-A细胞增殖率

将HEC-1-A细胞悬浮液接种到96孔板中,按照 上述分组处理后,在37 ℃、5% CO2孵育48 h后,将 5 mg/mL、20μL的MTT溶液添加到每个孔中,37 ℃下 培养细胞4 h,舍弃每个孔中的残余液体后,将150 μL二 甲基亚砜添加到每个孔中,轻轻摇动孔板,使用酶标仪 在570 nm下测定每个孔的光密度(D)值,计算细胞增殖 率。

1.5 流式细胞术检测各组HEC-1-A细胞凋亡变化

将各组HEC-1-A细胞(1×10⁵个/孔)接种到37 ℃的 96孔板中,并用PBS洗涤细胞。细胞在室温下避光 孵育15 min,加入5 mL膜联蛋白V-FITC和5 mL PI, 使用配有CellQuest软件的FACScan流式细胞仪检测 凋亡细胞,分析细胞凋亡率。

1.6 Transwell实验检测HEC-1-A细胞迁移变化

将1×10⁵个HEC-1A细胞分散在200 μL无血清 RPMI-1640培养基中,将细胞接种到上室中;将含有 20%FBS的培养基加入到下室中。细胞用4%多聚甲 醛在室温下固定15 min,然后用0.1%结晶紫室温下 染色20 min,用PBS洗涤,在光学显微镜下观察HEC-1-A细胞迁移的数量。

Western blot检测HEC-1-A细胞中cGAS、 STING以及PD-L1蛋白表达水平

细胞于RIPA裂解液中冰上孵育30 min,并进行 超声处理,4°C、12000 r/min离心细胞裂解物20 min, 保留上清液。通过SDS-PAGE分离蛋白质,并将其 转移到硝酸纤维素膜上,将膜与cGAS、STING以 及PD-L1一抗(均1:1500稀释)在4°C下孵育过夜,之 后将二抗(1:2000稀释)在室温下孵育1h,使用增 强化学发光底物ECL对蛋白质进行可视化,并使用 ChemiDoc XRS Biorad成像仪和图像实验室软件进 行成像,分析蛋白表达水平情况。

1.8 构建子宫内膜癌细胞癌移植瘤小鼠模型,并 检测肿瘤组织中CD8⁺T细胞浸润数

取小鼠随机分为对照组, Eto低、中、高浓度组,

Eto高浓度+RU.521组,每组10只,然后取出1.3中采 集的各组HEC-1A细胞,分散于PBS(1×10⁶个/μL)中, 将每种细胞悬液共100 μL皮下注射到小鼠的右背 部。注射后,让小鼠自由进食和饮水4周。

4周后,小鼠无死亡发生,通过腹腔注射60 mg/kg 的戊巴比妥深度麻醉小鼠,然后颈部脱臼迅速处死 小鼠,剥离异种移植肿瘤组织进行称重,在4%多聚 甲醛中固定,经脱水、透明、包埋后在切片机中连 续切片,之后加入兔源抗小鼠CD8抗体(1:100)孵育, 洗涤后按照试剂盒说明书进行操作。之后脱水,经 中性树脂封片后,任选3个视野拍照,采用Image Pro Plus软件定量视野中CD8⁺T阳性细胞数及切片面积, 按照CD8⁺T阳性细胞数/切片面积(个/mm²)可得出 CD8⁺T细胞浸润数。

1.9 统计分析

用 SPSS 26.0软件分析结果,以均数±标准差 (*x*±s)表示数据,多组间比较采用单因素方差分析,进 一步行SNK-q检验;当P<0.05时,差异有统计学意义。

2 结果

2.1 不同浓度的 Eto对各组 HEC-1-A细胞增殖率 的影响

与对照组相比,低、中、高浓度Eto处理HEC-1-A细胞后,各组增殖率显著降低,Eto浓度越高,其 增殖率下降越多,且组与组之间均具有统计学差异 (P<0.05);与Eto高浓度组相比,Eto高浓度+RU.521 组增殖率显著增加,结果具有统计学差异(P<0.05) (图1)。结果表明,不同浓度的Eto均可抑制HEC-1-A 细胞增殖。

2.2 不同浓度的 Eto对各组 HEC-1-A细胞凋亡率 的影响

与对照组相比,低、中、高浓度Eto处理HEC-1-A细胞后,各组凋亡率显著增加,Eto浓度越高,其 凋亡率增加越多,且组与组之间均具有统计学差异 (P<0.05);与Eto高浓度组相比,Eto高浓度+RU.521 组凋亡率显著降低,结果具有统计学差异(P<0.05) (图2和表1)。流式结果表明,不同浓度的Eto均可促 进HEC-1-A细胞凋亡。

2.3 不同浓度的 Eto对各组 HEC-1-A细胞迁移的 影响

与对照组相比,低、中、高浓度Eto处理HEC-1-A细胞后,各组细胞迁移数显著降低,Eto浓度越

*P<0.05,与对照组比较; *P<0.05,与Eto低浓度组比较; *P<0.05,与Eto中浓度组比较; @P<0.05,与Eto高浓度组比较。

*P<0.05 compared with control group; [#]P<0.05 compared with Eto low concentration group; [&]P<0.05 compared with Eto medium concentration group; [@]P<0.05 compared with Eto high concentration group. 图1 比较HEC-1-A细胞增殖率变化

Fig.1 Comparison of HEC-1-A cell proliferation rate changes

Fig.2 Observation of changes in HEC-1-A cell apoptosis

高,其细胞迁移数量下降越多,且组与组之间均具有统计学差异(P<0.05);与Eto高浓度组相比,Eto高浓度+RU.521组细胞迁移数显著增加,结果具有统计学差异(P<0.05)(图3和表2)。结果表明,不同浓度的Eto均可抑制HEC-1-A细胞迁移。

2.4 不同浓度的Eto对各组HEC-1-A细胞cGAS、 STING以及PD-L1蛋白表达水平的影响

与对照组相比,低、中、高浓度Eto处理HEC-1-A细胞后,各组cGAS、STING蛋白表达水平显著 增加,PD-L1蛋白表达水平显著降低,Eto浓度越高,

Tab	le 1 Comparison of changes in apoptosis rate of HEC-1-A cells	
组别	凋亡率/%	
Group	Apoptosis rate /%	
Control	5.86±0.59	
Eto low concentration	15.22±7.53*	
Eto medium concentration	25.25±2.53*"	
Eto high concentration	38.52±3.86* ^{#&}	
Eto high concentration+RU.521	23.64±2.37 [@]	

	表1	比较HEC-1-A细胞凋亡率变化
able 1	Compariso	n of changes in anontosis rate of HEC-1-A cells

x±s, n=6; *P<0.05, 与对照组比较; *P<0.05, 与Eto低浓度组比较; *P<0.05, 与Eto中浓度组比较; @P<0.05, 与Eto高浓度组比较。

 $\bar{x}\pm s$, n=6; *P<0.05 compared with control group; *P<0.05 compared with Eto low concentration group; *P<0.05 compared with Eto medium concentration group; @P<0.05 compared with Eto high concentration group.

Control

Eto high concentration

Eto low concentration

Eto medium concentration

Eto high concentration+RU.521 图3 观察HEC-1-A细胞迁移变化

Fig.3 The migration of HEC-1-A cells was observed

Table 2 Comparison of TEC-1-A ten ingration number changes			
组别	迁移细胞数		
Group	Number of migration cells		
Control	186.28±18.66		
Eto low concentration	122.41±12.25*		
Eto medium concentration	75.37±7.55**		
Eto high concentration	48.46±4.86* ^{#&}		
Eto high concentration+RU.521	$83.18{\pm}8.34^{@}$		

表2 比较HEC-1-A细胞迁移数变化 Table 2 Comparison of HEC-1-A cell migration number changes

x±s, n=6; *P<0.05, 与对照组比较; *P<0.05, 与Eto低浓度组比较; *P<0.05, 与Eto中浓度组比较; @P<0.05, 与Eto高浓度组比较。

 $\overline{x}\pm s$, n=6; *P<0.05 compared with control group; *P<0.05 compared with Eto low concentration group; *P<0.05 compared with Eto medium concentration group; @P<0.05 compared with Eto high concentration group.

cGAS、STING蛋白表达水平增加越多, PD-L1蛋白 表达水平下降越多,且组与组之间均具有统计学差 异(P<0.05); 与Eto高浓度组相比, Eto高浓度+RU.521 组细胞cGAS、STING蛋白表达水平降低, PD-L1表 达显著增加,结果具有统计学差异(P<0.05)(图4和表

3)。这表明Eto可能通过调节激活cGAS-STING信号 通路抑制子宫内膜癌细胞免疫逃逸。

2.5 不同浓度的Eto对各组HEC-1-A细胞移植瘤 小鼠组织中CD8⁺T细胞浸润数的影响

为进一步验证Eto对子宫内膜癌的影响,实验

图4 HEC-1-A细胞cGAS、STING、PD-L1蛋白表达水平 Fig.4 Expression of cGAS, STING, and PD-L1 proteins in HEC-1-A cells

	表3	比较HEC-1-A	A细胞cGAS、	STING, 1	PD-L1表达水平	F
Table 3	Compariso	on of expressio	on levels of cO	GAS, STINO	G, and PD-L1 i	n HEC-1-A cells

组别 Group	cGAS/β-actin	STING/β-actin	PD-L1/β-actin
Control	0.15±0.02	0.25±0.03	1.06±0.11
Eto low concentration	0.31±0.04*	0.54±0.06*	$0.72 \pm 0.08*$
Eto medium concentration	$0.62{\pm}0.07^{*^{\#}}$	$0.82{\pm}0.09^{*\#}$	$0.48{\pm}0.05^{*\#}$
Eto high concentration	$0.85{\pm}0.09^{*\#\&}$	1.24±0.13* ^{#&}	0.22±0.03* ^{#&}
Eto high concentration+RU.521	0.55±0.06 [@]	$0.66{\pm}0.07^{@}$	$0.57{\pm}0.06^{@}$

x±s, n=6; *P<0.05, 与对照组比较; *P<0.05, 与Eto低浓度组比较; *P<0.05, 与Eto中浓度组比较; @P<0.05, 与Eto高浓度组比较。

 $\bar{x}\pm s$, n=6; *P<0.05 compared with control group; *P<0.05 compared with Eto low concentration group; *P<0.05 compared with Eto medium concentration group; *P<0.05 compared with Eto high concentration group.

进行了小鼠体内实验探索,结果发现与对照组相 比,低、中、高浓度Eto处理HEC-1-A细胞后,各组 CD8⁺T细胞浸润数显著增加,Eto浓度越高,CD8⁺T细 胞浸润数增加越多,但肿瘤质量逐渐降低,且组与组 之间均具有统计学差异(P<0.05);与Eto高浓度组相 比,Eto高浓度+RU.521组CD8⁺T细胞浸润数显著降 低,肿瘤质量增加(P<0.05)(图5和表4)。这表明Eto 可抑制细胞免疫逃逸及肿瘤生长。

3 讨论

子宫内膜癌是一种常见的妇科恶性肿瘤,约占女性癌症的4.8%^[10]。大多数患有子宫内膜癌的患者如果在早期被诊断,可以获得良好的预后诊疗,伴随着高达82%的五年生存率,晚期被诊断患者,其生存率大大降低^[11],进一步研究表明到2030年,被诊断患有这种疾病的女性人数预计将是2020年的两倍^[12]。因此,

全面了解子宫内膜癌的发病机制,寻找更有效的治疗 方法势在必行。

Eto是一种常用的催眠和静脉麻醉剂,具有起效 快、维持时间短、苏醒迅速等特点,临床研究表明 在子宫内膜癌腹腔镜的治疗中,Eto可用于静脉注射 麻醉^[13]。以往的研究表明,Eto具有抗血小板聚集、 抗氧化、抗炎等作用,尤其是它的抗肿瘤作用被逐 渐关注^[14]。如Eto可以有效地减弱A549细胞的增殖和 迁移能力^[15]。研究证明细胞增殖过度以及凋亡减少 均与癌症发生发展密切相关,两者处于动态平衡,抑 制增殖和促进凋亡可抑制肿瘤发展^[16]。本研究发现 不同浓度的Eto处理HEC-1-A细胞后,HEC-1-A细胞 凋亡率显著增加,且其增殖率显著下降,呈现浓度依 赖性,与张晶晶等^[8]研究结果相吻合,表明Eto可抑 制HEC-1-A细胞增殖,诱导其凋亡。同时研究发现 转移是癌症发展的关键步骤,而不同浓度的Eto处理

Eto high concentration

Eto high concentration+RU.521

图5 各组HEC-1-A细胞移植瘤小鼠组织中浸润的CD8⁺T细胞数

Fig.5 Number of CD8⁺T cells infiltrating in the tissues of HEC-1-A cell transplanted tumor mice in each group

表4 各组HEC-1-A细胞移植瘤小鼠组织中CD8 ⁺ T细胞浸润	ī 数
--	------------

Table 4	Number of CD8 ⁺ T	cell infiltration in the tissues	of HEC-1-A cell tra	nsplanted tumor mice in each group)

组别	CD8 ⁺ T细胞浸润数/mm ⁻²	肿瘤质量/g
Group	Infiltration number of CD8 ⁺ T cells $/mm^{-2}$	Tumor mass /g
Control	80.24±8.04	2.52±0.26
Eto low concentration	134.28±13.44*	1.88±0.19*
Eto medium concentration	235.11±24.31* [#]	1.34±0.14*#
Eto high concentration	411.05±41.24* ^{#&}	$0.88{\pm}0.09^{*\#\&}$
Eto high concentration+RU.521	204.15±20.55 [@]	1.22±0.13@

x±s, n=10; *P<0.05, 与对照组比较; *P<0.05, 与Eto低浓度组比较; *P<0.05, 与Eto中浓度组比较; @P<0.05, 与Eto高浓度组比较。

 $\bar{x}\pm s$, n=10; *P<0.05 compared with control group; "P<0.05 compared with Eto low concentration group; "P<0.05 compared with Eto medium concentration group; @P<0.05 compared with Eto high concentration group.

HEC-1-A细胞可显著抑制HEC-1-A细胞迁移,但其 具体机制尚不清楚。

CD8⁺T细胞又称细胞毒性T淋巴细胞,是肿瘤微 环境中发挥免疫效应的免疫细胞^[17]。PD-L1,也称为 B7-H1或CD274, 通过与程序性死亡1受体结合抑制 CD8⁺T细胞发挥作用,而在许多人类癌症中PD-L1蛋 白的高水平表达,与患者不良预后相关[18]。本研究发 现经不同浓度Eto处理HEC-1-A细胞中CD8⁺T细胞浸 润数增加, PD-L1表达水平显著降低, 表明Eto可以抑 制细胞免疫逃逸,发挥抗肿瘤作用。cGAS是一种激 活先天免疫反应的胞质DNA传感器,可催化cGAMP 的合成, cGAMP作为第二信使结合并激活衔接蛋白 STING,诱导I型干扰素和其他免疫调节分子表达,在 癌症免疫治疗中发挥着重要作用[19]。先前研究表明

cGAS途径的激活对于内在抗肿瘤免疫是重要的,并 且cGAMP可以直接用于癌症免疫治疗^[20]。本研究 发现不同浓度的Eto处理HEC-1-A细胞后, cGAS、 STING蛋白表达水平升高, cGAS-STING信号通路被 激活,同时细胞免疫逃逸、增殖及肿瘤生长被抑制, 癌细胞凋亡被促进,与ZENG等[21]结果相吻合,推测 Eto可通过激活cGAS-STING信号通路抑制子宫内膜 癌细胞增殖、迁移和免疫逃逸,诱导其凋亡。为进 一步验证实验推测,实验以cGAS抑制剂RU.521进行 回复验证,结果显示RU.521逆转了Eto对HEC-1-A细 胞的抗肿瘤作用,提示Eto可抑制子宫内膜癌细胞增 殖、迁移和免疫逃逸,诱导其凋亡,这一过程与激活 cGAS-STING信号通路有关。

综上所述, Eto通过激活cGAS-STING信号通路

抑制HEC-1-A细胞增殖、迁移和免疫逃逸,诱导其 周亡,这为Eto治疗子宫内膜癌提供了理论依据,但 Eto通过激活cGAS-STING信号通路中的具体基因 或蛋白抑制HEC-1-A细胞恶性行为进展仍在探索之 中。

参考文献 (References)

- BLIAO L, CHEN Y, ZHOU J, et al. microRNA-133b inhibits ntumor cell proliferation, migration and invasion by targeting SUMO1 in endometrial carcinoma [J]. Technol Cancer Res Treat, 2021, 20: 15330338211065241.
- [2] MA J, ZHAO X, SHI L. Circ 003390/eukaryotic translation initiation factor 4A3 promoted cell migration and proliferation in endometrial cancer via vascular endothelial growth factor signaling by miR-195-5p [J]. Bioengineered, 2022, 13(5): 11958-72.
- [3] LI D, ZHANG J, YIN L, et al. Etomidate inhibits cell proliferation and induces apoptosis in A549 non-small cell lung cancer cells via downregulating WWP2 [J]. Exp Ther Med, 2021, 22(5): 1254.
- [4] AV SA L G D, SILSA C R D, DE A NETO J B, et al. Etomidate inhibits the growth of MRSA and exhibits synergism with oxacillin [J]. Future Microbiol, 2020, 15: 1611-9.
- [5] 刘璐, 王迎春, 高继奎. 依托咪酯对子宫内膜癌细胞增殖抑制 和调亡的影响[J]. 中国优生与遗传杂志(LIU L, WANG Y C, GAO J K. Effects of etomidate on proliferation inhibition and apoptosis of endometrial cancer cells [J]. Chinese Journal of Birth Health & Heredity), 2021, 29(9): 1251-5.
- [6] JIANG M, CHEN P, WANG L, et al. cGAS-STING, an important pathway in cancer immunotherapy [J]. J Hematol Oncol, 2020, 13(1): 81.
- [7] YAN X, YAO C, FANG C, et al. Rocaglamide promotes the infiltration and antitumor immunity of NK cells by activating cGAS-STING signaling in non-small cell lung cancer [J]. Int J Biol Sci, 2022, 18(2): 585-98.
- [8] 张晶晶,朱乐玫,刘娟,等. 依托咪酯通过PI3K/AKT通路抑 制子宫内膜癌细胞增殖的实验研究[J]. 中国优生与遗传杂 志(ZHANG J J, ZHU L M, LIU J, et al. Experimental study of etomidate inhibiting the proliferation of endometrial cancer cells through PI3K/AKT pathway [J]. Chinese Journal of Birth Health & Heredity), 2022, 30(1): 1910-5.
- [9] PONS B J, PETTES-DULER A, NAYLIES C, et al. Chronic exposure to Cytolethal Distending Toxin (CDT) promotes a cGAS-

dependent type I interferon response [J]. Cell Mol Life Sci, 2021, 78(17/18): 6319-35.

- [10] CHE Q, XIAO X, XU J, et al. 17β-estradiol promotes endometrial cancer proliferation and invasion through IL-6 pathway [J]. Endocr Connect, 2019, 8(7): 961-8.
- [11] GENG A, LUO L, REN F, et al. miR-29a-3p inhibits endometrial cancer cell proliferation, migration and invasion by targeting VEGFA/CD C42/PAK1 [J]. BMC Cancer, 2021, 21(1): 843.
- [12] CAI Y, ZHAO F. Fluvastatin suppresses the proliferation, invasion, and migration and promotes the apoptosis of endometrial cancer cells by upregulating Sirtuin 6 (SIRT6) [J]. Bioengineered, 2021, 12(2): 12509-20.
- [13] 刘珂庆, 王光, 王建喜, 等. 腹腔镜下全子宫切除术苏醒延迟1 例[J]. 临床合理用药杂志(LIU K Q, WANG G, WANG J X, et al. Laparoscopic total hysterectomy delayed awakening in 1 case [J]. Chinese Journal of Clinical Rational Drug Use), 2018, 11(4): 172.
- [14] ROSSOKHIN A V, SHARONOVA I N, DVORZHAK A, et al. The mechanisms of potentiation and inhibition of GABAA receptors by non-steroidal anti-inflammatory drugs, mefenamic and niflumic acids [J]. Neuropharmacology, 2019, 160: 107795.
- [15] CHU C N, WU K C, CHUNG W S, et al. Etomidate suppresses invasion and migration of human A549 lung adenocarcinoma cells [J]. Anticancer Res, 2019, 39(1): 215-23.
- [16] YUAN Y, MIN S J, XU D Q, et al. Expressions of VEGF and miR-21 in tumor tissues of cervical cancer patients with HPV infection and their relationships with prognosis [J]. Eur Rev Med Pharmacol Sci, 2018, 22(19): 6274-9.
- [17] CAGNONI A J, GIRIBALDI M L, BLIDNER A G, et al. Galectin-1 fosters an immunosuppressive microenvironment in colorectal cancer by reprogramming CD8⁺ regulatory T cells [J]. Proc Natl Acad Sci USA, 2021, 118(21): e2102950118.
- [18] ZHOU C, WEI W, MA J, et al. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels [J]. Mol Ther, 2021, 29(4): 1512-28.
- [19] HU M, ZHOU M, BAO X, et al. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation [J]. J Clin Invest, 2021, 131(3): e139333.
- [20] WANG H, HU S, CHEN X, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade [J]. Proc Natl Acad Sci USA, 2017, 114(7): 1637-42.
- [21] ZENG X, LI X, ZHANG Y, et al. IL6 induces mtDNA leakage to affect the immune escape of endometrial carcinoma via cGAS-STING [J]. J Immunol Res, 2022, 2022: 3815853.