USP35促进膀胱癌细胞的恶性亚型转变

周子敬^{1*} 郭亚东² 单泽志³ 毛士玉² 郑泽柠² 葛欣² ('安徽理工大学医学院,淮南 232001;²同济大学医学院/同济大学附属上海市第十人民医院,上海 200092; ³复旦大学上海肿瘤医院内科,上海 200030)

摘要 膀胱癌(bladder cancer, BCa)细胞的恶性亚型转变是由非肌层浸润性膀胱癌向肌层浸 润性膀胱癌的转变,其对膀胱癌患者是有害的。据报道,上皮-间充质转化(epithelial-mesenchymal transition, EMT)与这种转变呈正相关。然而,尽管EMT相关基因标记已被证明可作为癌症的预后 指标和潜在治疗靶点,但其潜在机制仍然不清楚。该研究发现,去泛素化酶USP35改变了EMT相关 因子的蛋白质稳定性。USP35在E-cadherin和P53的下调以及N-cadherin的上调中起到了关键的作 用。同时,通过TargetScan分析发现,几乎一半的USP35相关的miRNA也参与了MDM2介导的转录 后调控。因此USP35可能通过miRNA竞争触发MDM2上调,从而导致P53下调,MDM2与P53形成了 一个完整的负反馈回路。此外,敲低USP35抑制EMT诱导的膀胱癌细胞的增殖和迁移,提示USP35 的上调可能是膀胱癌向恶性亚型转变的基础信号。

关键词 USP35; EMT; 膀胱癌; P53; 亚型转变; 肿瘤迁移

USP35 Promotes Malignant Subtype Transition of Bladder Cancer Cells

ZHOU Zijing1*, GUO Yadong2, SHAN Zezhi3, MAO Shiyu2, ZHENG Zening2, GE Xin2

(¹School of Medicine, Anhui University of Science and Technology, Huainan 232001, China; ²School of Medicine, Tongji University/Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200092, China; ³Department of Internal Medicine, Fudan University Shanghai Cancer Hospital, Shanghai 200030, China)

Abstract The malignant subtype transition of BCa (bladder cancer) cells is the transition from non-muscle invasive bladder cancer to muscle invasive bladder cancer, which is detrimental to bladder cancer patients. EMT (epithelial-mesenchymal transition) is reported to possess the most positive correlation with this transition. However, the underlying mechanism is still elusive although EMT-related gene signature have been shown to be prognostic indicators and potential therapeutic targets for cancer. This study found that the deubiquitinase USP35 altered the protein stability of multiple EMT-related factors. USP35 played a clear evident role in downregulation of Ecadherin and P53, together with upregulation of N-cadherin. Simultaneously, TargetScan analysis found that almost half of USP35-related miRNAs were also involved in MDM2 mediated post-transcriptional regulation. So USP35 may trigger MDM2 upregulation through miRNA competition, resulting in P53 downregulation, and MDM2 forms a complete negative feedback loop with P53. Furthermore, knockdown USP35 inhibits EMT-induced proliferation and migration capability of BCa cells, suggesting that the up-regulation of USP35 may serve as a foundational signal for BCa transition to malignant phenotype.

Keywords USP35; EMT; BCa; P53; subtype transition; tumor migration

收稿日期: 2023-03-09 接受日期: 2023-05-04

国家自然科学基金(批准号: 82073086、81874198)资助的课题

^{*}通讯作者。Tel: 19155440625, E-mail: zzj20210818@163.com

Received: March 9, 2023 Accepted: May 4, 2023

This work was supported by the National Natural Science Foundation of China (Grant No.82073086, 81874198)

^{*}Corresponding author. Tel: +86-19155440625, E-mail: zzj20210818@163.com

膀胱癌(bladder cancer, BCa)通常发生在膀胱上皮 细胞中,是世界上第五大最常见的癌症类型。据估计, 2019年有524305例膀胱癌新发病例,有超过228735例 死亡病例^[1]。最常见的膀胱癌类型是尿路上皮癌,占总 病例数的90%。30%~50%的早期膀胱癌患者在术后2 年内会出现复发的情况,术后5年内复发率也很高^[2]。 膀胱癌的存活率与肿瘤分期、病理类型和诊断时间密 切相关,其中IV期膀胱癌的5年生存率仅为15%^[3]。

荷兰拉德堡德(Radboud)大学医学中心的研究表 明, P53基因突变与膀胱癌的复发和进展有关^[4]。此 外,他们还发现P53会影响86%膀胱癌患者基因组的 结构^[5]。这一新的认识强调了P53信号在发现膀胱癌 治疗的潜在药物方面的重要性。同时,对577例患者 和412名健康对照进行了膀胱癌生物标志物的Meta分 析,将膀胱癌分为多种亚型,包括肌层浸润性膀胱癌 (muscle-invasive bladder cancer)和尿路上皮癌等^[6]。 一般来说,与非肌层浸润性膀胱癌相比,肌层浸润性 膀胱癌更容易发生远处转移。转移性膀胱癌患者的 预后往往不良,总生存率仅为15%左右^[3]。因此,有必 要对膀胱癌转移扩散进行深入研究。

上皮-间充质转化(epithelial-mesenchymal transformation, EMT)通过增强肿瘤细胞的干性,减少肿瘤 细胞凋亡,已被证明是赋予肿瘤细胞转移和侵袭能 力的重要过程,其与膀胱癌细胞的恶性转化密切相 关^[7-9]。尽管EMT已被确定为膀胱癌转移的预测指标 且与膀胱癌的耐药性有关^[9],但其潜在机制仍未被完 全了解^[10]。因此,人们对膀胱癌的EMT过程中涉及 的关键信号分子进行了大量的研究。

本研究报道泛素特异性蛋白酶35(ubiquitin specific peptidase 35, USP35)与膀胱癌细胞的病理特征呈正相关,可以预测膀胱癌患者的不良预后。本研究的数据首次表明,USP35可以诱导膀胱癌上皮细胞的EMT过程,从而促进膀胱癌细胞的增殖和迁移。此外,USP35在膀胱癌细胞中的表达量增加伴随着miRNA竞争,USP35的上调以双微体同源基因2(mouse double minute 2, MDM2)依赖性方式下调P53,这表明USP35可以通过P53介导EMT过程,且可作为膀胱癌的治疗靶点。

1 材料与方法

1.1 材料

1.1.1 细胞 人HEK293T细胞系、2株膀胱癌细胞

系(T24和RT-4)及人永生化膀胱上皮细胞SV-HUC-1 均购于中国科学院上海细胞库。

1.1.2 主要试剂 DMEM培养基、RPMI-1640培 养基、10%胎牛血清(fetal bovine serum, FBS)、1% 青霉素--链霉素双抗和0.25%胰酶购于美国Gibco公 司; PBS、甘油、TEMED、Tween-20、40%丙烯 酰胺、硝酸纤维素膜、4%多聚甲醛等购于生工生 物工程(上海)股份有限公司;转染试剂lipo2000和 RNA提取试剂盒购于美国Invitrogen公司; Trizol、 PrimeScript RT反转录试剂盒、Real-time PCR试剂 盒、10× DNA上样缓冲液、DNA marker等均购于日 本TaKaRa公司; USP35抗体(货号: LS-C178984)购于 美国LifeSPan BioSciences公司; N-cadherin(#4061)和 E-cadherin(#14472)抗体购于美国Cell Signaling Technology公司; P53(货号: DO-1)、MDM2(货号: SMP14) 抗体购于美国 Santa Cruz Biotechnology公司; P21(货 号: WL0362)和Cyclin D1(货号: WL01435a)抗体购于 沈阳万类生物科技有限公司; 4xFlag(货号: 20543-1-AP)和GAPDH(货号: 10494-1-AP)抗体购于美国Proteintech公司; 辣根过氧化物酶(horseradish peroxidase, HRP)标记的山羊抗兔IgG抗体购于北京博奥龙免疫 技术有限公司。

1.1.3 质粒与菌种 pcDNA3.1-4xFlag-USP35质粒
由王平教授(同济大学附属第十人民医院癌症中心)
提供。感受态大肠杆菌DH5α购于日本TaKaRa公司。
1.2 方法

1.2.1 细胞培养与克隆筛选 HEK293T培养在含 有10%胎牛血清和1%青霉素--链霉素的DMEM培养 基中,而T24培养在含有10%胎牛血清和1%青霉素--链 霉素的RPMI-1640培养基中,以上细胞均放入37 °C、 5% CO₂培养箱中培养。HEK293T细胞使用磷酸钙法 进行转染,T24细胞使用lipo2000进行转染。将T24细 胞接种于6孔板中,当细胞密度为80%时,参照lipo2000 说明书将重组质粒及对照载体转染至细胞内。细胞 贴壁后,换液,加入2 μg/mL的嘌呤霉素进行筛选,2天 后更换全新培养基。挑选形成的单细胞克隆至6孔板 中进行扩大培养,直至获得稳定的具有抗性的细胞克 隆。文章中使用的USP35和MDM2的shRNA靶序列(所 有序列均为人源)见表1。

1.2.2 总RNA的提取及qRT-PCR检测 Trizol法 提取T24细胞中的总RNA,将RNA用一步法逆转录 成cDNA,然后用qRT-PCR检测USP35和MDM2的

	Table 1 Sequences of shRNA	
短发夹RNA	引物序列(5'→3')	_
shRNA	Primer sequences $(5' \rightarrow 3')$	
NC shRNA	TTC TCC GAA CGT GTC ACG T	
USP35 shRNA1	AGC ATC CTT CAG GCC TTA TTC	
USP35 shRNA2	CGC AGA TGC TGA CTG CCA TTA	
USP35 shRNA3	CCG ACT GCT GTA CGG TAT AAA	
MDM2 shRNA1	GAT TCC AGA GAG TCA TGT GTT	
MDM2 shRNA2	AAT ACC AAC ATG TCT GTA CCT	

表1 短发夹RNA序列

表2 qRT-PCR引物序列		
	Table 2 Primer sequences for qRT-PCR	
基因名称	引物序列(5'→3')	
Gene name	Primer sequences $(5' \rightarrow 3')$	
USP35	F: ATC TGT CAG CAA CGT CAC C	
	R: CCT TCA TCC TCA TCC TTG TCT TC	
MDM2	F: GGC AGG GGA GAG TGA TAC AGA	
	R: GAA GCC AAT TCT CAC GAA GGG	

mRNA水平,以GAPDH作为内参。使用2--ACt方法计 算基因相对表达水平,每个基因设置3个复孔。qRT-PCR引物序列(所有序列均为人源)见表2。

1.2.3 WB(Western bolt)检测蛋白表达水平 收集 的细胞在蛋白质裂解缓冲液(50 mmol/L Tris-Cl、0.5% NP-40、150 mmol/L NaCl、1 mmol/L EDTA、10%甘 油磷酸盐和蛋白酶抑制剂, pH7.4)中裂解。30 min后, 4 ℃、12 000 r/min离心15 min以分离细胞裂解物的可 溶性部分。将蛋白样品煮沸,然后加入到凝胶样品孔 中,通过SDS-PAGE凝胶电泳进行分离,最后进行WB 分析。使用电化学发光(electrogenerated chemiluminescence, ECL)图像分析系统(上海天能科技有限公司)对 ECL发光等直接成像,获得实验结果。

1.2.4 CCK8实验 将处于对数生长期的T24细胞 及筛选的细胞,按5×10³个/孔的密度接种于96孔板 (培养基体积:100 µL)中。每组细胞设置5个复孔,分 别于Day0、Day1、Day2、Day3、Day4弃去上清, 加入100 µL含有10% CCK8的无血清DMEM培养基, 于37 °C、5% CO₂培养箱中孵育2 h后, 吸取90 μL上 清,用酶标仪测定波长为450 nm处的吸光度(optical density, D)值, 计算细胞增长率。

1.2.5 平板克隆实验 将转染的细胞接种于6孔板 中,初始细胞密度为每孔500个细胞,培养7~10天。细 胞集落用4%多聚甲醛室温固定15 min,并在室温下用 结晶紫染色15 min。将培养板在水流下洗涤后拍照。

1.2.6 细胞划痕实验 将细胞接种于6孔板中,待其 融合率达到90%以上时,弃去培养基,用PBS清洗3次, 用200 µL枪头在每孔细胞中均匀划十字横线,用PBS 清洗漂浮的细胞,加入培养基,置于37 ℃、5% CO2培 养箱中培养。在0、24、48 h分别进行显微镜观察和 拍照,计算愈合率。划痕愈合率=[(S_{0h}-S_{24h})/S_{0h}]×100%, S表示未愈合的面积。

1.2.7 肿瘤干细胞成球实验 肿瘤球富集自T24细 胞。将T24细胞的单细胞悬液(每孔200个细胞,每组有 5个复孔)接种在96孔超低附着板(Corning公司,货号: 3474)上,并在DMEM/F12培养基(Gibco, 1:1)中培养, 补充5 mg/mL胰岛素(Sigma)、20 ng/mL EGF(Sigma)、 1:50 B27(Gibco)、10 ng/mL碱性成纤维生长因子(basicfibroblast growth factor, bFGF)和0.4% BSA。培养大 约10天后,离心收集培养基中悬浮的较大、形状较规 则的肿瘤细胞球体,胰酶消化,用配制好的培养基重 悬肿瘤细胞,按照1:2的比例传代,继续培养。在相差 显微镜下可视化肿瘤球体, 拍照和计数并以图形表 示。显微镜下计数其中直径大于100 mm的悬浮细胞 球体数目,随机选取5个连续视野,计算悬浮细胞球的 比率。用0.05% EDTA消化球体,并通过40 mm过滤器 过滤。

1.2.8 生物信息学分析 采用基因富集分析(gene set enrichment analysis, GSEA), 获得了300个与 USP35呈正相关的基因,检测了USP35在膀胱癌中 的生物学功能。GSEA分析使用R包聚类分析器进行。

1.3 统计学分析

GraPhPad Prism软件(V9.1.1, GraPhPad Software, Inc., USA)用于数据分析。使用双尾未配对 Student's *t* 检验进行统计分析。这些数据以均值±标准差(*x*±*s*)的方式表示。所有实验独立重复至少3次。*P*<0.05表示差异具有统计学意义。

2.1 USP35参与膀胱癌EMT的过程

通过GSEA发现USP35高表达与移植排斥、 EMT、炎症应答、KRAS信号转导和UV应答密切相 关(图1A)。EMT已被证明在膀胱癌细胞的亚型转化 中起着关键作用,并在膀胱癌转移和预后中起决定性 作用。为了能够更好地验证USP35在膀胱癌中的生 物学作用,我们通过WB检测了3株常见的具有不同特

A: GSEA分析显示USP35与移植排斥反应、上皮-间充质转化、炎症反应、KRAS信号转导和UV应答密切相关; B: USP35在膀胱癌不同细胞系中的表达水平; C: qRT-PCR检测细胞中USP35的表达水平; D、E: WB检测T24细胞中USP35、E-cadherin和N-cadherin的蛋白水平, 敲低USP35降低了N-cadherin和USP35蛋白的表达水平, 增加了E-cadherin蛋白的表达水平。*P<0.05, **P<0.01, ns: 无统计学意义。

A: GSEA analysis shows that USP35 is closely related to allograft rejection, epithelial-mesenchymal transition, inflammatory response, KRAS signal transduction and UV response; B: the expression level of USP35 in different cell lines of bladder cancer; C: the RNA level of USP35 was detected by qRT-PCR; D,E: the expression of N-cadherin, E-cadherin and USP35 protein was measured by WB, knocking down USP35 reduced N-cadherin and USP35 protein expression, and increased E-cadherin protein expression. *P < 0.05, **P < 0.01, ns: no significance.

图1 USP35参与介导膀胱癌的EMT过程

Fig.1 USP35 is involved in the EMT process of bladder cancer

征的膀胱癌细胞株(T24、SV-HUC-1和RT-4)中USP35 的表达情况,发现USP35在T24中表达量较高(图1B), 因此随后构建了USP35敲低的T24细胞系。通过qRT-PCR和WB验证shRNA在T24中的敲减效率,结果显 示两条shRNA都可以显著降低USP35mRNA的转录 水平和USP35蛋白的表达水平(图1C~图1E)(P<0.05)。 通过WB检测发现,在T24细胞中,敲低USP35可以显 著上调E-cadherin的表达和抑制N-cadherin的表达(图 1D和图1E)。结果提示USP35参与了膀胱癌EMT的调 控。

2.2 USP35通过影响MDM2/P53信号通路来调控 EMT

接下来,我们进一步解析了USP35促进膀胱癌 发生EMT的分子机制。USP35作为一种去泛素化酶, 通过UbiBrowser 2.0(http://ubibrowser.ncpsb.org/)来预 测USP35的下游底物,预测到的下游底物包括己知的 AURKB、ESR1、TNIP2、VDAC1,还有KDM1A、 TP53、MDM2等。MDM2/P53可能是USP35潜在的 下游底物(图2A)。USP35和MDM2之间的蛋白质相 互作用结构模式图如图2B所示,应用HDOCK(http:// hdock.phys.hust.edu.cn/)和LigPlot+ 2.2.4(https://www. ebi.ac.uk/thornton-srv/software/LigPlus/)软件找出氢 键、盐桥与疏水键相互作用形成的功能残基,利用 PyMol 2.2.0(https://pymol.org/2/)观察蛋白质-蛋白质 对接构象。MDM2显示为绿色, USP35显示为蓝色, 它们的结合位点由小棒显示(见图2B中的放大图像)。 利用 Prodigy(https://bianca.science.uu.nl/prodigy/)计算 组合蛋白的结合能和解离常数(dissociation constant, K_d),结果表明组合蛋白的结合能为-11.1 kcal/mol, K_d 得分为7.3×10°。其中P53已被多篇文献报道参与了 EMT的调控^[11-12]。而在P53诸多负反馈调节机制中, 最核心的机制是由MDM2及其同源异聚复合蛋白 MDMX(murine double minute X)实现的。MDM2可 以降低P53的转录活性和稳定性^[13],因此MDM2被认 为是与P53关联最为紧密的功能靶标。WB结果显 示在T24细胞中, 敲低USP35, 可显著下调MDM2的 表达水平,上调P53的表达(图2C和图2D)(P<0.05)。 分子对接分析和WB结果表明, USP35可能通过与 MDM2的直接相互作用介导MDM2/P53信号转导(图 2B),从而增加MDM2的稳定性。另外,我们还构建 了USP35和MDM2同时敲低的T24细胞系,通过WB 验证 shRNA在T24中的敲减效率,结果显示 shUSP35 ·研究论文·

和 shMDM2分别显著降低了 USP35和 MDM2蛋白的 表达量(图 2E和图 2F)。通过 WB检测发现,在 T24细 胞中,同时敲低 USP35和 MDM2后, USP35调控 EMT 的能力降低(图2E和图2G)。

2.3 参与USP35和MDM2调控的miRNA

为进一步探索 USP35上调 MDM2表达的原因, 通过 TargetScan分析寻找可能参与 USP35和 MDM2 调控的 miRNA,因为研究发现,miRNA通过靶向 MDM2/P53信号通路的调控因子(例如Zeb1/2、Snail、 Slug和Twist1)促进EMT,从而导致MDM2/P53通路的 激活^[14]。

有趣的是,我们发现几乎一半已被鉴定的调 节USP35的miRNA参与MDM2表达调控(图3A和 表3), 这表明在膀胱癌细胞中过表达USP35可以上 调 MDM2(图 3B), 根据 miRNA 竞争理论^[14-16], 共享 miRNA结合位点的转录本会竞争结合相同的miR-NA,由此调控彼此的表达水平。这种USP35过表达 将有效地阻止miRNA诱导的MDM2下调,从而导致 P53水平的显著降低(P<0.05)。为了证实我们的假设, 我们进行了实验,发现USP35以剂量依赖性的方式降 低了P53水平(图3C)。此外, 敲低USP35抑制了癌细 胞生长(图3D),这也可能与激活P53信号有关,因为 P53也以其诱导细胞周期停滞的能力而闻名[17-18]。由 于MDM2/P53可能是USP35潜在的下游底物, USP35 促进BCa进展的过程与P53通路密切相关。因此,我 们用WB检测P53通路相关蛋白(P53、P21和Cyclin D1)的表达水平以阐明USP35促进BCa进展的分子机 制,结果发现敲除USP35后,P53和P21表达量明显增 高;相反Cyclin D1的表达量明显降低。P53/P21/Cyclin D1被广泛认为是调控细胞周期的经典途径。敲 低USP35显著改变了细胞周期相关蛋白的表达水平 (图3E和图3F)。

2.4 在体外, 敲低USP35抑制膀胱癌细胞的增殖、 迁移和干性的获得

由于P53在调节癌细胞特性(如肿瘤细胞的生长 和转移)方面具有广泛的功能,因此研究USP35是否 能够促进肿瘤细胞的增殖和转移侵袭引起了我们的 兴趣。我们通过平板克隆(图4A和图4B)、肿瘤成 球(图4C和图4D)和细胞迁移(图4E和图4F)实验进行 验证。平板克隆结果表明,USP35促进膀胱癌细胞 的增殖。肿瘤成球实验结果显示,NC组膀胱癌肿瘤 干细胞的数量分别从57和58减少到40和45,而敲低

A: UbiBrowser 2.0分析预测USP35的下游底物; B: USP35和MDM2蛋白质互作结构模式图。USP35表现为蓝色, MDM2表现为绿色, 两者结合位 点为黄色小棒; C、D: WB检测T24细胞中P53和MDM2的蛋白水平, 敲低USP35降低了MDM2蛋白的表达量, 增加了P53蛋白的表达量; E~G: 同 时敲低USP35和MDM2后, 通过WB检测T24细胞中USP35、MDM2、E-cadherin和N-cadherin的蛋白水平。同时敲低USP35和MDM2后, USP35 调控EMT的能力降低。**P*<0.05, ***P*<0.01, ns: 无统计学意义。

A: UbiBrowser 2.0 analysis predicts downstream substrates for USP35; B: USP35 and MDM2 protein interaction structure pattern diagram. USP35 is represented as slate cartoon, while MDM2 is showed as cyan cartoon, and their binding sites are displayed yellow sticks; C,D: the expression of P53 and MDM2 protein were measured by WB, knocking down USP35 reduced MDM2 protein expression, and increased P53 protein expression; E-G: after knocking down USP35 and MDM2 at the same time, WB is used to detect the proteins levels of USP35, MDM2, E-cadherin and N-cadherin in T24 cells. After knocking down USP35 and MDM2 at the same time, USP35's ability to regulate EMT is reduced. *P<0.05, **P<0.01, ns: no significance.

图2 USP35通过影响MDM2/P53信号通路来调控EMT

Fig.2 USP35 regulates EMT by affecting the MDM2/P53 signaling pathway

USP35后,膀胱癌肿瘤干细胞的数量分别从65和69 减少到34和35,因此USP35可促进膀胱癌细胞干性的获得。细胞划痕实验结果表明,USP35促进膀胱 癌细胞的转移。综上所述, USP35积极促进膀胱癌 细胞的增殖、迁移和干性的获得, 为膀胱癌治疗提 供了有前途的治疗策略。

A: TargetScan预测可能参与USP35和MDM2调控的miRNA,取调控USP35的miRNA和调控MDM2的miRNA的交集并作图; B: 正常组织和BCa组 织中的USP35表达水平; C: WB检测T24细胞中USP35转染不同剂量时P53的蛋白水平; D: CCK8实验检测转染USP35基因对膀胱癌细胞增殖能 力的影响; E、F: WB检测T24细胞中P53通路相关蛋白的表达水平; *P<0.05, **P<0.01, ns: 无统计学意义。

A: TargetScan predicts the miRNA that may be involved in the regulation of USP35 and MDM2. The intersection of USP35-regulated miRNA and MDM2-regulated miRNA is taken and plotted; B: USP35 expression levels in normal tissues and BCa tissues; C: WB detects protein levels of P53 when USP35 is transfected at different doses in T24 cells; D: CCK8 experiments detects the effect of transfection of *USP35* gene on the proliferation capacity of bladder cancer cells; E,F: WB detects the expression levels of P53 pathway-related proteins in T24 cells. *P<0.05, **P<0.01, ns: no significance.

图3 参与USP35和MDM2调控的miRNA Fig.3 miRNA involved in the regulation of USP35 and MDM2

3 讨论

膀胱癌是一种异质性疾病。虽然膀胱癌的治 疗已经取得了长足的进展,但是目前膀胱癌向侵袭 性疾病发展的相关研究甚少^[19]。因此,全面了解膀 胱癌细胞亚型转变的分子机制将会为未来膀胱癌 的复发预测和个性化治疗提供必要的帮助^[20]。

泛素化是最常见的蛋白质翻译后修饰之一,

在介导细胞功能方面具有多种作用^[21-22]。泛素与 底物蛋白的结合是通过酶级联介导的多步骤过程 来实现的^[14,23],而泛素部分的去除是由去泛素化酶 (deubiquitinating enzyme, DUB)催化的^[24]。到目前为 止,只有少数DUB被报道参与膀胱癌的进展,例如, MINDY1作为YAP的去泛素化酶,为膀胱癌的治疗 提供了一个可能的靶点^[25]。METTL14和USP38的反

小干扰RNA	分子机制
microRNA	Molecular mechanism
miRNA-370-3p	The combination of miR-370 and PTEN inactivates AKT, MDM2 and mTOR while stimulates caspase-3, P53 and GSK3β ex-
	pression, promoting apoptosis and suppressing proliferation of gastric cancer cells ^[32]
miRNA-1827	circ_0080229 is an oncogenic factor that mechanistically promotes proliferation and metastasis in glioma by increasing MDM2 through sponging miR-1827 ^[33]
	miR-1827 is a novel miRNA that targets MDM2 through binding to the 3'-UTR of MDM2 mRNA. miR-1827 negatively regu-
	lates MDM2, which in turn increases P53 protein levels to increase transcriptional activity of P53 and enhance P53-mediated
	stress responses, including apoptosis and senescence. Overexpression of miR-1827 suppresses the growth of xenograft colorec- tal tumors, whereas the miR-1827 inhibitor promotes tumor growth in mice in a largely P53-dependent manner ^[34]
miRNA-647	Upregulation of circular RNA circFAM53B predicts adverse prognosis and accelerates the progression of ovarian cancer via the miR-646/VAMP2 and miR-647/MDM2 signaling pathways ^[35]
miRNA-1252-5p	Circular RNA hsa_circ_0000073 enhances osteosarcoma cells malignant behavior by sponging miR-1252-5p and modulating CCNE2 and MDM2 ^[36]
miRNA-2113	MNX1-AS1 is over-expressed in prostate cancer patients, posing promotive effects on proliferation, migration and invasion via miR-2113/MDM2 axis ^[37]
miRNA-205-5p	BMSCs (bone marrow mesenchymal stem cells)-derived exosomal miR-205-5p inhibits inflammation in RA (rheumatoid arthri- tis) through MDM2 ^[38]
miRNA-152-3p	Nuclear HOTAIRM1 promotes EGR1 ubiquitination by enhancing the MDM2-EGR1 interaction, while cytoplasmic HO-
	TAIRM1 increases ULK3 expression by competitively sponging miR-152-3p, therefore contributing to leukemia cell autophagy and proliferation ^[39]
miRNA-5003-3p	LINC00342 promotes cell proliferation, migration and invasion and inhibites cell apoptosis <i>in vitro</i> by miR-545-5p/MDM2 axis. LINC00342 knockdown suppresses COAD tumor growth and proliferation <i>in vivo</i> by regulating miR-545-5p/MDM2 ^[40]
miRNA-545-5p	miR-140-3p can promote the migration and differentation of D-NPMSCs (degenerative intervertebral disc nucleus pulposus
Ĩ	stem/progenitor cells) and down-regulate KLF5 to promote N-cadherin expression and transcriptionally inhibit MDM2 to up- regulate Slug expression ^[41]
miRNA-140-3p	miR-503-3p promotes epithelial-mesenchymal transition in breast cancer by directly targeting SMAD2 and E-cadherin ^[42]

表3 MDM2相关miRNA对不同肿瘤EMT的影响 Table 3 Effects of MDM2-related miRNA on EMT in different tumors

馈回路调控膀胱癌细胞的迁移、侵袭和EMT^[26]。因此,对于DUB在膀胱癌细胞恶性亚型转变期间的调 节机制知之甚少。

USP35作为一种去泛素酶已被报道通过与肿 瘤相关蛋白的相互作用参与多个肿瘤的发生发展。 例如,USP35通过抑制卵巢癌中STING介导的干扰 素信号转导^[27],从而诱导肿瘤免疫逃逸。USP35过 表达抑制了Erastin/RSL3诱导的铁死亡,从而促进 肺癌的发生发展。USP35由雌激素和AKT调节,通 过稳定和增强雌激素受体α的转录活性来促进乳腺 肿瘤发生^[28]。在非小细胞肺癌中,USP35通过抑制 RRBP1蛋白的降解,从而缓解内质网应激诱导的细 胞凋亡^[29]。另外USP35可通过稳定BIRC3的表达抑 制顺铂诱导的肿瘤细胞凋亡^[30]。

在本研究中,我们发现USP35可通过稳定MDM2 蛋白的表达,从而抑制P53的表达,促进膀胱癌的EMT, 最终增强膀胱癌的侵袭转移能力。几乎所有人类肿 瘤中均存在P53信号通路的异常,近50%的恶性肿瘤中 存在P53的突变。在结构上,MDM2的N-端P53结合结构域可以结合到P53的转录激活结构域,阻碍P53与其 共转录激活因子的结合,抑制P53靶基因的激活;此外, MDM2的C-端RING(really interesting new gene)结构域具 有E3泛素连接酶活性,可以泛素化降解P53和MDMX。 随后我们通过分子对接分析发现,USP35可能通过 与MDM2的直接相互作用介导MDM2/P53信号转导。 P53抑制EMT最显著的特征是它对肿瘤获得干性的能力的影响,因为EMT是肿瘤复发、转移和侵袭所依赖 的主导因素^[31]。我们进一步通过肿瘤成球实验发现敲 低USP35可显著抑制肿瘤球的形成。因此,我们的数 据提供了一个USP35-MDM2/P53-EMT的完整信号轴, 此信号轴可作为膀胱癌亚型转变的新型转导途径,相 关功能实验的研究也证实了USP35可促进膀胱癌细胞 的增殖、迁移和膀胱癌细胞干性的获得(图4)。

本研究揭示了DUB USP35作为膀胱癌亚型转变的治疗靶点,可能为专注于抑制EMT信号轴的癌症治疗开辟一条新的途径。但本研究缺少动物实验以

A,B: colony formation assay was taken to evaluate the proliferation of T24 cells after knocking down USP35; C,D: after knocking down USP35, the cancer stem cell sphere formation assay was taken to evaluate the size, diameter and number of bladder tumor spheroids; E,F: wound-healing assay was taken to evaluate the migration of T24 cells after knocking down USP35. **P<0.01.

图4 USP35促进膀胱癌细胞的增殖、迁移及膀胱癌细胞干性的获得

Fig.4 USP35 promotes the proliferation and migration of bladder cancer cells and the acquisition of dryness of bladder cancer cells

进一步在体内验证USP35是否可通过诱导EMT促进 膀胱癌远处转移,并且需要进一步通过临床样本验证 USP35与膀胱癌患者远处转移的临床相关性。

参考文献 (References)

- KARIMI A, SHOBEIRI P, AZADNAJAFABAD S, et al. A global, regional, and national survey on burden and Quality of Care Index (QCI) of bladder cancer: the global burden of disease study 1990-2019 [J]. PLoS One, 2022, 17(10): e0275574.
- [2] TANG X, CAO Y, LIU J, et al. Diagnostic and predictive values of inflammatory factors in pathology and survival of patients undergoing total cystectomy [J]. Mediators Inflamm, 2020, 2020: 9234067.
- [3] ROTH B, FURRER M A, GIANNAKIS I, et al. Positive precystectomy biopsies of the prostatic urethra or bladder neck do not necessarily preclude orthotopic bladder substitution [J]. J Urol, 2019, 201(5): 909-15.

- [4] GALESLOOT T E, GROTENHUIS A J, KOLEV D, et al. Genomewide meta-analysis identifies novel genes associated with recurrence and progression in non-muscle-invasive bladder cancer [J]. Eur Urol Oncol, 2022, 5(1): 70-83.
- [5] LORENZO ROMERO J G, SALINAS SANCHEZ A S, GIMENEZ BACHS J M, et al. p53 gene mutations in superficial bladder cancer [J]. Urol Int, 2004, 73(3): 212-8.
- [6] ZHENG L F, SUN W Y. Meta-analysis of microRNAs as biomarkers for muscle-invasive bladder cancer [J]. Biomed Rep, 2016, 5(2): 159-64.
- [7] TANG C, MA J, LIU X, et al. Development and validation of a novel stem cell subtype for bladder cancer based on stem genomic profiling
 [J]. Stem Cell Res Ther, 2020, 11(1): 457.
- [8] XIAO Z, CAI Z, DENG D, et al. An EMT-based risk score thoroughly predicts the clinical prognosis, tumor immune microenvironment and molecular subtypes of bladder cancer [J]. Front Immunol, 2022, 13: 1000321.
- [9] CAO R, YUAN L, MA B, et al. An EMT-related gene signature for

the prognosis of human bladder cancer [J]. J Cell Mol Med, 2020, 24(1): 605-17.

- [10] HUANG J, LO U G, WU S, et al. The roles and mechanism of IFIT5 in bladder cancer epithelial-mesenchymal transition and progression [J]. Cell Death Dis, 2019, 10(6): 437.
- [11] SCHUBERT J, BRABLETZ T. P53 spreads out further: suppression of EMT and stemness by activating miR-200c expression [J]. Cell Res, 2011, 21(5): 705-7.
- [12] JACKSON-WEAVER O, UNGVIJANPUNYA N, YUAN Y, et al. PRMT1-p53 pathway controls epicardial EMT and invasion [J]. Cell Rep, 2020, 31(10): 107739.
- [13] WANG X, JIANG X. Mdm2 and MdmX partner to regulate p53 [J]. FEBS Lett, 2012, 586(10): 1390-6.
- [14] PARFENYEV S, SINGH A, FEDOROVA O, et al. Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer [J]. Cell Death Dis, 2021, 12(1): 17.
- [15] NGUYEN A V, TOEPEL J, BURGESS S, et al. Time-course global expression profiles of chlamydomonas reinhardtii during photobiological H(2) production [J]. PLoS One, 2011, 6(12): e29364.
- [16] WANG X, YIN H, ZHANG L, et al. The construction and analysis of the aberrant lncRNA-miRNA-mRNA network in non-small cell lung cancer [J]. J Thorac Dis, 2019, 11(5): 1772-8.
- [17] LIVINGSTONE L R, WHITE A, SPROUSE J, et al. Altered cell cycle arrest and gene amplification potential accompany loss of wildtype p53 [J]. Cell, 1992, 70(6): 923-35.
- [18] LI T, KON N, JIANG L, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence [J]. Cell, 2012, 149(6): 1269-83.
- [19] CHOI W, CZERNIAK B, OCHOA A, et al. Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer [J]. Nat Rev Urol, 2014, 11(7): 400-10.
- [20] KNOWLES M A. Bladder cancer subtypes defined by genomic alterations [J]. Scand J Urol Nephrol Suppl, 2008, 42: 116-30.
- [21] YAO T, COHEN R E. A cryptic protease couples deubiquitination and degradation by the proteasome [J]. Nature, 2002, 419(6905): 403-7.
- [22] MAXWELL B A, GWON Y, MISHRA A, et al. Ubiquitination is essential for recovery of cellular activities after heat shock [J]. Science, 2021, 372(6549): eabc3593.
- [23] SAIFEE N H, ZHENG N. A ubiquitin-like protein unleashes ubiquitin ligases [J]. Cell, 2008, 135(2): 209-11.
- [24] D'ARCY P, LINDER S. Molecular pathways: translational potential of deubiquitinases as drug targets [J]. Clin Cancer Res, 2014, 20(15): 3908-14.
- [25] LUO Y, ZHOU J, TANG J, et al. MINDY1 promotes bladder cancer progression by stabilizing YAP [J]. Cancer Cell Int, 2021, 21(1): 395.
- [26] HUANG J, ZHOU W, HAO C, et al. The feedback loop of MET-TL14 and USP38 regulates cell migration, invasion and EMT as well as metastasis in bladder cancer [J]. PLoS Genet, 2022, 18(10): e1010366.
- [27] ZHANG J, CHEN Y, CHEN X, et al. Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer [J]. Cell

Death Differ, 2021, 28(1): 139-55.

- [28] CAO J, WU D, WU G, et al. USP35, regulated by estrogen and AKT, promotes breast tumorigenesis by stabilizing and enhancing transcriptional activity of estrogen receptor alpha [J]. Cell Death Dis, 2021, 12(6): 619.
- [29] WANG W, WANG M, XIAO Y, et al. USP35 mitigates endoplasmic reticulum stress-induced apoptosis by stabilizing RRBP1 in nonsmall cell lung cancer [J]. Mol Oncol, 2022, 16(7): 1572-90.
- [30] LIU C, CHEN Z, DING X, et al. Ubiquitin-specific protease 35 (USP35) mediates cisplatin-induced apoptosis by stabilizing BIRC3 in non-small cell lung cancer [J]. Lab Invest, 2022, 102(5): 524-33.
- [31] BECK B, LAPOUGE G, RORIVE S, et al. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression [J]. Cell Stem Cell, 2015, 16: 67-79.
- [32] ZENG Y, FU M, WU G W, et al. Upregulation of microRNA-370 promotes cell apoptosis and inhibits proliferation by targeting PTEN in human gastric cancer [J]. Int J Oncol, 2016, 49(4): 1589-99.
- [33] ZHOU Z, ZHENG X, MEI X, et al. Hsa_circ_0080229 upregulates the expression of murine double minute-2 (MDM2) and promotes glioma tumorigenesis and invasion via the miR-1827 sponging mechanism [J]. Ann Transl Med, 2021, 9(9): 762.
- [34] ZHANG C, LIU J, TAN C, et al. microRNA-1827 represses MDM2 to positively regulate tumor suppressor p53 and suppress tumorigenesis [J]. Oncotarget, 2016, 7(8): 8783-96.
- [35] SUN D, LIU J, ZHOU L. Upregulation of circular RNA circ FAM53B predicts adverse prognosis and accelerates the progression of ovarian cancer via the miR 646/VAMP2 and miR 647/MDM2 signaling pathways [J]. Oncol Rep, 2019, 42(6): 2728-37.
- [36] REN Z, YANG Q, GUO J, et al. Circular RNA hsa_circ_0000073 enhances osteosarcoma cells malignant behavior by sponging miR-1252-5p and modulating CCNE2 and MDM2 [J]. Front Cell Dev Biol, 2021, 9: 714601.
- [37] LIANG D, TIAN C, ZHANG X. IncRNA MNX1-AS1 promotes prostate cancer progression through regulating miR-2113/MDM2 axis [J]. Mol Med Rep, 2022, 26(1): 231.
- [38] SUN Q, ZHANG X, TAN Z, et al. Bone marrow mesenchymal stem cells-secreted exosomal microRNA-205-5p exerts inhibitory effect on the progression of liver cancer through regulating CDKL3 [J]. Pathol Res Pract, 2021, 225: 153549.
- [39] JING Y, JIANG X, LEI L, et al. Mutant NPM1-regulated lncRNA HOTAIRM1 promotes leukemia cell autophagy and proliferation by targeting EGR1 and ULK3 [J]. J Exp Clin Cancer Res, 2021, 40(1): 312.
- [40] MIAO Z, LIU S, XIAO X, et al. LINC00342 regulates cell proliferation, apoptosis, migration and invasion in colon adenocarcinoma via miR-545-5p/MDM2 axis [J]. Gene, 2020, 743: 144604.
- [41] WANG Z, ZHANG S, ZHAO Y, et al. MicroRNA-140-3p alleviates intervertebral disc degeneration via KLF5/N-cadherin/MDM2/Slug axis [J]. RNA Biol, 2021, 18(12): 2247-60.
- [42] ZHAO Z, FAN X, JIANG L, et al. MiR-503-3p promotes epithelialmesenchymal transition in breast cancer by directly targeting SMAD2 and E-cadherin [J]. J Genet Genomics, 2017, 44(2): 75-84.