S100A8促进ox-LDL诱导的血管内皮细胞氧化损伤

王丽娜 马娜* 孙小刚 (甘肃省第二人民医院,心血管内科,兰州 730000)

摘要 该文旨在探究S100A8蛋白在ox-LDL诱导的血管内皮细胞氧化损伤中的生理功能及 作用机制。通过体外建立ox-LDL诱导的HUVEC氧化损伤模型,用实时荧光定量PCR实验、蛋白 质免疫印记实验分别检测S100A8的表达水平。通过转染对照siRNA和靶向S100A8的siRNA,敲低 细胞中S100A8的表达,通过实时荧光定量PCR检测ICAM-1、VCAM-1和E-Selectin的mRNA表达水 平来评估内皮细胞激活水平,用CCK-8实验检测细胞活性,用流式细胞术检测细胞凋亡水平和线粒 体ROS积累水平。为了明确S100A8促进ox-LDL诱导的细胞氧化损伤的作用机制,用蛋白质免疫印 记实验分析了敲低S100A8对SIRT6表达水平的影响,并通过RNA干扰敲低SIRT6,检测细胞活力和 线粒体ROS积累情况。结果表明,在ox-LDL诱导的氧化损伤中,血管内皮细胞S100A8表达水平上 调。敲低S100A8显著抑制了ox-LDL诱导的细胞的氧化损伤、细胞凋亡和线粒体活性氧积累;敲 低S100A8^增加了SIRT6的表达量;在细胞中同时敲低S100A8和SIRT6不能抑制ox-LDL诱导的细胞 氧化损伤。总之,该研究发现在ox-LDL诱导的细胞氧化损伤中,S100A8表达水平上调,通过抑制 SIRT6的表达,促进线粒体活性氧积累,引起细胞凋亡。

关键词 S100A8; 血管内皮细胞; 氧化损伤; 动脉粥样硬化; SIRT6; 氧化低密度脂蛋白

S100A8 Promotes ox-LDL-Induced Oxidative Damage of Vascular Endothelial Cells

WANG Lina, MA Na*, SUN Xiaogang

(Department of Cardiovascular Medicine, Gansu Second People's Hospital, Lanzhou 730000, China)

Abstract The aim of this study was to investigate the physiological function and mechanism of S100A8 protein in ox-LDL-induced oxidative damage of vascular endothelial cells. ox-LDL induced HUVEC oxidative damage model was established *in vitro*, and the expression level of S100A8 was detected by real-time qPCR and Western blot. The expression of S100A8 was knocked down by transfection of control siRNA and S100A8 siRNAs. The cells viability was detected by CCK-8 assay, the endothelial activation was evaluated though the expression of *ICAM-1*, *VCAM-1* and *E-Selectin*, which were measured by real-time qPCR assay, and the apoptotic rate and mitochondrial ROS accumulation level were detected by flow cytometry. In order to clarify the mechanism of S100A8 promoting ox-LDL-induced cellular oxidative damage, the effect of S100A8 knockdown on SIRT6 expression level was analyzed by Western blot, and the cells viability and mitochondrial ROS accumulation were detected in *SIRT6* knockdown cells. The results showed that the expression level of S100A8 in vascular endothelial cells was up-regulated in ox-LDL-induced oxidative damage. S100A8 knockdown significantly inhibited ox-LDL-induced oxidative damage.

*通讯作者。Tel: 13993193289, E-mail: mana1026@126.com

收稿日期: 2022-12-07 接受日期: 2023-02-28

甘肃省卫生健康行业科研计划(批准号: GSWSKY2020-47)资助的课题

Received: December 7, 2022 Accepted: February 28, 2023

This work was supported by the Research Project of Health Industry in Gansu Province (Grant No.GSWSKY2020-47)

^{*}Corresponding author. Tel: +86-13993193289, E-mail: mana1026@126.com

tive damage, apoptosis and mitochondrial reactive oxygen species accumulation. Knockdown of S100A8 increased SIRT6 expression. Simultaneous knockdown of S100A8 and SIRT6 in cells could not inhibit ox-LDL-induced oxidative damage. In conclusion, this study found that in ox-LDL-induced cellular oxidative damage, the expression level of S100A8 was up-regulated, and by inhibiting the expression of SIRT6, the accumulation of mitochondrial reactive oxygen species was promoted, leading to cell apoptosis.

Keywords S100A8; vascular endothelial cell; oxidative damage; atherosclerosis; SIRT6; ox-LDL

动脉粥样硬化是临床上常见的心血管疾病^[1-2]。 氧化低密度脂蛋白(oxidized low-density lipoprotein, ox-LDL)在血管壁沉积,引起炎症反应和血管内皮细 胞损伤是动脉粥样硬化的主要发病原因^[3-5]。通常情 况下,ox-LDL通过与低密度脂蛋白蛋白受体LOX-1 结合诱导活性氧(reactive oxygen species, ROS)的产 生和积累,并通过Bax/Bcl-2/Caspase-3通路引发细胞 凋亡^[6]。S100A8/A9复合体是由钙结合蛋白S100家 族的两个成员组成的^[7]。过去的研究发现,S100A8/ A9参与炎症反应的调控,在动脉粥样硬化基本进展 过程中发挥了重要的作用^[8-9],但是S100A8/A9是否 直接参与调控内皮细胞的氧化损伤应激仍不清楚。 本研究利用体外ox-LDL诱导的血管内皮细胞氧化 损伤模型,探究了S100A8调控内皮细胞线粒体ROS 积累的功能和机制。

1 材料和方法

1.1 材料和试剂

ox-LDL、native LDL购自北京义翘神州科技 股份有限公司; DMEM培养基、胎牛血清、Lipofectamine RNAiMax转染试剂、TRIzol试剂购自美 国ThermoFisher Scientific公司; M-MLV逆转录试剂 盒购自美国Promega公司; AceQ qPCR SYBR Green Master Mix购自诺唯赞生物科技公司; 兔抗SIRT6抗体、 兔抗GAPDH抗体和HRP抗兔IgG抗体购自美国Santa Cruz公司; 线粒体ROS检测试剂盒购自美国Cayman

化学公司。

1.2 实验方法

1.2.1 细胞培养 将10%胎牛血清加入到DMEM高 糖培养基,配制成完全培养基用于人脐静脉内皮细胞 (human umbilical vein endothelial cell, HUVEC)的培养。 HUVEC细胞接种在6孔细胞培养板中,每孔加入2 mL 培养基,并放置在37 °C CO₂培养箱中,每3天传代1 次。细胞转染所需的siRNA由广州锐博生物科技公 司合成,序列见表1。干扰RNA配制成20 nmol/L母液, 于-80°C冰箱中保存。转染时,取50 μL无血清培养 基,加入2 μL siRNA, 另取50 μL无血清培养基,加入 2 μL Lipofectamine RNAiMax转染试剂,充分混匀后 室温静置10 min,随后加入到培养基中。转染6 h后 换成新鲜完全培养基。

1.2.2 细胞活力检测 用培养基稀释HUVEC细胞至 1×10⁵个/mL,接种到96孔细胞培养板中,每孔100 μL。 细胞贴壁后加ox-LDL处理24 h,随后加入10 μL CCK-8 检测液,于37 °C继续孵育1 h,最后取出孔板,用酶标 仪检测波长为450 nm处的吸光度值。

1.2.3 实时荧光定量PCR 收集待测细胞,加入 1 mL TRIzol裂解液,室温放置裂解15 min。随后加 入200 μL氯仿,充分混匀后经12 000×g离心10 min。 用移液器小心吸取上层水相溶液500 μL,放置在新 离心管中,同时加入500 μL异丙醇,充分混匀后继续 于12 000×g条件下离心10 min。离心结束后弃掉异 丙醇,将沉淀用70%乙醇漂洗2次,晾干后用无核酸 酶的ddH₂O溶解。取1 μg总RNA,加入1 μL oligo dT

Table 1 Small interfering RNA sequences		
siRNA	正向引物(5'→3')	反向引物(5'→3')
	Forward sequence $(5' \rightarrow 3')$	Reverse sequence $(5' \rightarrow 3')$
siNC	GCG ACG AUC UGC CUA AGA U	AUC UUA GGC AGA UCG UCG C
siA8_1	AGA CCG AGU GUC CUC AGU A	UAC UGA GGA CAC UCG GUC U
siA8_2	GAC GUC UGG UUC AAA GAG U	ACU CUU UGA ACC AGA CGU C
siSIRT6	GUG CAU GUU UCG UAU AAG U	ACU UAU ACG AAA CAU GCA C

表1 siRNA序列信息 Table 1 Small interfering RNA sequence

Table 2 Primer sequences used in qPCR			
基因	正向引物(5'→3')	反向引物(5'→3')	
Gene	Forward sequence $(5' \rightarrow 3')$	Reverse sequence $(5' \rightarrow 3')$	
<i>S100A8</i>	GCT AGA GAC CGA GTG TCC TCA G	GCC CAT CTT TAT CAC CAG AAT G	
<i>S100A9</i>	TGG AGG ACC TGG ACA CAA ATG	TCG TCA CCC TCG TGC ATC TT	
ICAM-1 (intercellular cell adhesion molecule-1)	CCT CTT GCG AAG ACG AGA AC	ACT CGC TCT GGG AAC GAA TA	
VCAM-I (vascular cell adhesion molecule-1)	TGA AGG GGC TAC ATC CAC AC	GAC CGT GCA GT T GAC AGT GA	
E-Selectin	CAA CAC ATC CTG CAG TGG TC	AGC TGA AGG AGC AGG ATG AA	
β-actin	CAG GCA CCA GGG CGT GAT	TAG CAA CGT ACA TGG CTG GG	

表2 定量PCR所用引物序列信息

引物, 定容至10 μL, 放置在70 °C加热5 min, 结束后 立即放置在冰上。向体系中再次加入1 µL M-MLV 逆转录酶、1 μL RNA酶抑制剂和5 μL M-MLV缓冲 液,调整体系至25 μL,放置于42 °C反应60 min。最后, 以cDNA为模板进行实时荧光定量PCR检测,所需引 物见表2。

1.2.4 Western blot 收集各组HUVEC细胞,加入 RIPA细胞裂解液,冰上裂解。取上清,加入5×SDS 上样缓冲液,100°C煮沸10 min。将细胞总蛋白在 100 V、10 mA条件下经 SDS-PAGE凝胶电泳分离,随 后在100 V、300 mA条件下将蛋白转印到 PVDF膜 上。PVDF膜先经过5%脱脂奶粉封闭30 min, 再分 别加入S100A8抗体(1:1000)、SIRT6抗体(1:1 000) 和GAPDH抗体(1:3 000)孵育液室温孵育90 min, 用PBST缓冲液漂洗3次后,加入HRP抗兔IgG抗体 (1:10 000) 孵育液室温放置 90 min。用 PBST缓冲液 漂洗5次后,在凝胶成像仪下显影。

1.2.5 Annexin V/PI染色 使用4°C低温离心机 300 ×g离心10 min, 收集细胞, 加入100 µL Annexin V 结合缓冲液重悬, 再加入10 µL FITC-Annexin V试剂 和1 µL PI室温避光孵育15 min,最后用流式细胞仪 获取各荧光通道数据。流式细胞数据使用Flowjo 7.6 软件分析。

1.2.6 线粒体ROS检测 HUVEC细胞接种在24孔 细胞培养板中,经转染和ox-LDL处理后,每孔加入 100 μL预热的含线粒体ROS探针的孵育液,在37 °C 避光孵育20 min。小心弃掉孵育液,用预热的HBSS 漂洗2次,最后经胰酶消化、离心(500 ×g离心10 min) 并重悬得到细胞悬液,使用BD流式细胞仪采集数 据,用Flowjo 7.6软件进行数据分析。

1.3 统计和分析

使用GraphPad Prism 9.0软件进行数据处理和

统计,两组间差异采用t检验,以P<0.05为差异具有 统计学意义。

2 结果

2.1 氧化应激促进S100A8的表达

为了研究 S100A8/S100A9二聚体在 ox-LDL诱 导的血管内皮细胞氧化损伤中的功能,我们在体 外培养的HUVEC细胞中加入终浓度为40 μg/mL 的ox-LDL,并诱导12h。定量PCR实验结果表明 ox-LDL处理后的HUVEC细胞中S100A8和S100A9 mRNA表达水平显著升高(图1A), Western blot实验 结果也进一步验证了S100A8蛋白表达水平也显著 升高(图1D)。进一步研究发现,过氧化氢同样可以 促进S100A8和S100A9的表达(图1B和图1E), 但天 然LDL(native LDL)的处理却并不影响S100A8和 S100A9的表达水平(图1C和图1E)。

2.2 敲低 S100A8抑制 ox-LDL 诱导的 HUVEC 氧 化损伤

为了进一步确认S100A8是否在ox-LDL诱导的 血管内皮细胞氧化损伤中发挥作用,我们在HUVEC 细胞中分别转染了2条靶向S100A8的干扰RNA, Western blot实验表明这2条 siRNAs 敲低作用可以显 著降低S100A8蛋白和mRNA的表达水平(图2A和图 2B)。随后,用不同浓度的ox-LDL处理转染siRNAs 的HUVEC细胞,用CCK-8实验检测细胞活性,结果 表明,随着ox-LDL浓度的增加,HUVEC细胞活性显 著下降。而转染靶向S100A8 siRNA的细胞活性显 著高于转染对照siRNA(siNC)的细胞活性(图2C)。

2.3 敲低 S100A8 抑制 ox-LDL 诱导的内皮细胞 激活

与Control组相比, ox-LDL处理的HUVEC细胞 中ICAM-I、VCAM-I和E-Selectin表达水平均显著

A~C: HUVEC细胞*S100A8*和*S100A9* mRNA在ox-LDL(A)、H₂O₂(B)和native LDL(C)刺激条件下的表达水平; D~F: S100A8蛋白在ox-LDL(D)、H₂O₂(E)和native LDL(F)刺激条件下的表达水平。ns: P>0.05; ***P<0.001; 与Control组相比。

A-C: the mRNA expression of *S100A8* and *S100A9* in HUVEC cells treated by ox-LDL (A), H_2O_2 (B) and native LDL (C); D-F: the protein expression of S100A8 in HUVEC cells treated by ox-LDL (D), H_2O_2 (E) and native LDL (F). ns: P > 0.05; ***P < 0.001 compared with Control group.

图1 S100A8和S100A9在HUVEC细胞中的表达

A、B: S100A8蛋白(A)和mRNA(B)在转染siNC和S100A8 siRNAs的HUVEC细胞中的表达情况; C: 不同浓度ox-LDL处理的HUVEC细胞活力。 ns: *P*>0.05; **P*<0.05; ***P*<0.001; 与siNC组相比。

A,B: the protein (A) and mRNA (B) expression of S100A8 in HUVEC cells transfected with siNC and S100A8 siRNAs; C: viability of HUVEC cells treated with different concentrations of ox-LDL. ns: P>0.05; *P<0.05; **P<0.001 compared with siNC group.

图2 敲低S100A8表达逆转ox-LDL诱导的细胞损伤

Fig.2 Knockdown S100A8 reverses ox-LDL-induced cell injury

上升,表明ox-LDL诱导了内皮细胞的激活。与siNC 组相比,敲低了S100A8表达的siAS100A8_1组和 siS100A8_2组*ICAM-1、VCAM-1和E-Selectin*表达水 平均显著下降(均P<0.01,图3)。

2.4 敲低S100A8抑制ox-LDL诱导的细胞凋亡

为了进一步研究S100A8对HUVEC氧化损伤的 影响,我们用Annexin V/PI双染色法标记了ox-LDL 处理的凋亡细胞,并用流式细胞仪检测分析。实验 结果表明,ox-LDL处理24h后,HUVEC出现了较多 的细胞凋亡,而敲低S100A8的细胞凋亡比例显著低 于对照组(图4A和图4B)。

2.5 敲低S100A8降低线粒体ROS积累

已有研究发现 ox-LDL 可以通过影响线粒体氧 化还原平衡, 促进细胞氧化损伤。为了明确 S100A8 是否调控了 HUVEC 细胞线粒体氧化还原平衡, 我们 标记了线粒体 ROS, 并用流式细胞仪进行检测。结 果表明, ox-LDL处理显著增加了 HUVEC 线粒体 ROS 水平, 而敲低 S100A8在一定程度上降低了线粒体活 性氧的积累(图5A和图5B)。

2.6 敲低 S100A8促进氧化应激条件下 SIRT6的 表达

过去的研究发现在ox-LDL诱导的氧化损伤中,

A-C: the mRNA expression levels of *ICAM-1*(A), *VCAM-1*(B) and *E-Selectin*(C) in HUVEC cells. ns: *P*>0.05; ***P*<0.01; ****P*<0.001. **图3** 敲低S100A8抑制ox-LDL诱导的内皮细胞激活

FITC-Annexin V

A: 流式细胞染色法检测调亡细胞; B: 各组凋亡细胞比例统计。ns: P>0.05; ***P<0.001。

A: flow cytometry analysis the apoptotic cells; B: the cells apoptotic rates in each group. ns: P>0.05; ***P<0.001.

图4 敲低S100A8抑制ox-LDL诱导的细胞凋亡

Fig.4 Knockdown S100A8 inhibits ox-LDL induced cell apoptosis

A: 流式细胞术检测细胞线粒体ROS水平; B: 各组平均荧光强度分析。ns: P>0.05; ***P<0.001。

A: flow cytometry analysis the mitochondrial ROS levels; B: the mean of fluorescence intensity value in each group. ns: P>0.05; ***P<0.001.

图5 敲低S100A8降低ox-LDL引起的线粒体ROS积累

Fig.5 Knockdown S100A8 inhibits ox-LDL-induced mitochondiral ROS accumulation

A: Western blot检测各组SIRT6蛋白表达水平; B: Western blot检测各组S100A8和SIRT6表达水平; C: 各组细胞活力检测。***P<0.001。 A: Western blot analysis the SIRT6 expression; B: Western blot analysis the S100A8 and SIRT6 expression; C: the cell viability in each group. ***P<0.001.

SIRT6表达水平呈现明显下调趋势。在本研究中发现, ox-LDL处理的HUVEC细胞中SIRT6蛋白表达水平显著下降, 而在转染S100A8 siRNAs的细胞中, SIRT6表达水平明显恢复(图6A)。在转染S100A8 siRNA的细胞中共转靶向*SIRT6*的siRNA, SIRT6表达水平进一步被抑制(图6B), 同时细胞活力也出现下降(图6C)。

2.7 敲低 SIRT6 促进 S100A8缺失引起的线粒体 ROS积累

为了明确 S100A8/SIRT6通路是否也参与线 粒体氧化还原平衡的调节,我们分别对 S100A8和 SIRT6敲低的细胞中线粒体 ROS水平进行了检测。 结果表明,尽管单独敲低 S100A8可以降低 ox-LDL 引起的线粒体ROS积累水平,但在此基础上敲低 SIRT6,线粒体ROS积累水平明显上升(图7)。这表 明S100A8通过下调SIRT6的表达进而促进ox-LDL 诱导的线粒体ROS积累和细胞氧化损伤。

3 讨论

S100A8/A9是钙结合蛋白S100家族的成员,分别含有93和113个氨基酸,在免疫细胞、血管内皮细胞中表达^[10]。S100A8和S100A9都含有一个带电的螺旋-环-螺旋结构域,可以形成稳定的同源二聚体或异源二聚体。在炎症反应中,来自中性粒细胞或单核细胞的分泌型S100A8/A9可以通过诱导活性氧的积累和炎性因子的分泌增强炎症反应^[11-12]。质

A:流式细胞术检测细胞线粒体ROS水平; B:各组平均荧光强度分析。***P<0.001。

A: flow cytometry analysis the mitochondrial ROS levels; B: the mean of fluorescence intensity value in each group. ***P<0.001. 图7 敲低SIRT6促进S100A8缺失引起的线粒体ROS积累

Fig.7 Knockdown SIRT6 promotes S100A8 deficiency induced mitochondrial ROS accumulation

型 S00A8/A9可以通过结合钙离子,调控钙离子相关的信号通路和细胞生理活动,如细胞骨架重构等^[13]。 最近的一些研究发现,S100A8/A9在调控动脉粥样 硬化疾病进展中发挥了重要作用,它可能作为动 脉粥样硬化新型生物标记物^[14]。然而,胞质表达的 S100A8/A9是否也参与调控动脉粥样硬化却仍不清 楚。

在本研究中,我们在体外培养HUVEC细胞,并 利用 ox-LDL诱导的氧化损伤模拟动脉粥样硬化的 发生。研究发现,在ox-LDL处理的HUVEC细胞中, S100A8在mRNA水平和蛋白水平均有显著上调。 此外,在H₂O₂诱导的细胞氧化损伤模型中,S100A8 表达也呈现上调,但使用 native LDL诱导却未发现 S100A8表达水平上调。这些结果提示, S100A8可以 特异性地响应细胞氧化应激并上调表达水平。为了 进一步研究S100A8表达水平上调的意义,我们利用 siRNA敲低细胞内源S100A8的表达,发现在S100A8 表达水平敲低后, ox-LDL诱导的内皮细胞激活、细 胞氧化损伤和细胞凋亡都呈现明显的下降,这提示 S100A8可能发挥了促进细胞氧化损伤和细胞凋亡 的作用。线粒体活性氧积累是细胞氧化应激反应 中的一个生理事件,本研究发现敲低S100A8后, ox-LDL诱导的HUVEC细胞线粒体 ROS积累水平出现 了明显下降。

SIRT6是组蛋白去乙酰化酶 sirtuins中的成员^[15], 已经被发现在线粒体氧化应激条件下它的表达水平 也会出现下调^[16]。SIRT6被发现可以与p53蛋白结 合,并被募集到Fas/FasL基因启动子区域,抑制TP53 的转录,减轻细胞氧化损伤^[17]。本研究同样发现在 ox-LDL诱导的HUVEC细胞氧化损伤模型中,SIRT6 的表达水平呈明显下调趋势。而敲低S100A8后, SIRT6的表达水平得到回补。在同时转染S100A8和 SIRT6 siRNA的细胞中,SIRT6表达水平被显著抑制, 因此尽管细胞S100A8蛋白表达下调,细胞氧化损伤 和线粒体活性氧积累均未出现下调。这些结果提示 ox-LDL可以通过诱导S100A8/A9的表达,抑制氧化 应激保护因子SIRT6的表达,进而促进细胞线粒体 ROS积累和细胞氧化损损伤。然而,S100A8通过何 种机制调控SIRT6的表达仍然未知,需要在后续工作 中进行研究。

综上所述,本研究发现了ox-LDL诱导的S100A8 表达水平上调在促进血管内皮细胞氧化损伤中发挥 了重要作用。这为S100A8作为动脉粥样硬化疾病诊 断和治疗的新靶点提供了理论依据。

参考文献 (References)

- ZHU Y, XIAN X, WANG Z, et al. Research progress on the relationship between atherosclerosis and inflammation [J]. Biomolecules, 2018, 8(3): 80.
- [2] PEDRO-BOTET J, CLIMENT E, BENAIGES D. Atherosclerosis and inflammation. New therapeutic approaches [J]. Med Clin, 2020, 155(6): 256-2.
- [3] KATTOOR A J, KANURI S H, MEHTA J L. Role of ox-LDL and LOX-1 in atherogenesis [J]. Curr Med Chem, 2019, 26(9): 1693-700.
- [4] HARTLEY A, HASKARD D, KHAMIS R. Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis: novel insights and future directions in diagnosis and therapy [J]. Trends Cardio-

vasc Med, 2019, 29(1): 22-6.

- [5] KHATANA C, SAINI N K, CHAKRABARTI S, et al. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis [J]. Oxid Med Cell Longev, 2020, 2020: 5245308.
- [6] BIAN W, JING X, YANG Z, et al. Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis [J]. Aging, 2020, 12(7): 6385-400.
- [7] PRUENSTER M, VOGL T, ROTH J, et al. S100A8/A9: from basic science to clinical application [J]. Pharmacol Ther, 2016, 167: 120-31.
- [8] CROCE K. S100A8/A9 complex: more than just a biomarker of cardiovascular risk [J]? Circ J, 2010, 74(4): 626-7.
- [9] FARRIS S D, HU J H, KRISHNAN R, et al. Mechanisms of urokinase plasminogen activator (uPA)-mediated atherosclerosis: role of the uPA receptor and S100A8/A9 proteins [J]. J Biol Chem, 2011, 286(25): 22665-77.
- [10] WANG L, LUO H, CHEN X, et al. Functional characterization of S100A8 and S100A9 in altering monolayer permeability of human umbilical endothelial cells [J]. PLoS One, 2014, 9(3): e90472.
- GHAVAMI S, ESHRAGI M, ANDE SR, et al. S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk be-

tween mitochondria and lysosomes that involves BNIP3 [J]. Cell Res, 2010, 20(3): 314-31.

- [12] ZHOU Y, HANN J, SCHENTEN V, et al. Role of S100A8/A9 for cytokine secretion, revealed in neutrophils derived from ER-Hoxb8 progenitors [J]. Int J Mol Sci, 2021, 22(16): 8845.
- [13] VOGL T, LUDWIG S, GOEBELER M, et al. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes [J]. Blood, 2004, 104(13): 4260-8.
- [14] GRANTHAM H J, HUSSAIN A B, REYNOLDS N J. Serum S100A8/A9 may act as biomarker of atherosclerosis severity in psoriasis [J]. J Invest Dermatol, 2022, 142(11): 2848-50.
- [15] KUANG J, CHEN L, TANG Q, et al. The role of Sirt6 in obesity and diabetes [J]. Front Physiol, 2018, 9: 135.
- [16] FAN Y, YANG Q, YANG Y, et al. Sirt6 suppresses high glucoseinduced mitochondrial dysfunction and apoptosis in podocytes through AMPK activation [J]. Int J Biol Sci, 2019, 15(3): 701-13.
- [17] WU S, LAN J, LI L, et al. Sirt6 protects cardiomyocytes against doxorubicin-induced cardiotoxicity by inhibiting P53/Fas-dependent cell death and augmenting endogenous antioxidant defense mechanisms [J]. Cell Biol Toxicol, 2021, doi: 10.1007/s10565-021-09649-2.