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摘要      双特异性磷酸酶6(DUSP6)是双特异性磷酸酶(DUSP)家族成员, 其在人体组织中广泛

表达, 可特异性地去磷酸化细胞外信号调节激酶1/2(ERK1/2)。由于DUSP6在丝裂原活化蛋白激酶

(MAPK)信号通路中的负调控作用, 其在肿瘤增殖、肿瘤对化疗的耐药性、肿瘤诊断、代谢稳态等

方面发挥重要作用, 并为药物靶点开发提供新思路。然而, DUSP6对肿瘤和糖脂代谢的影响是多样

的, 甚至是部分矛盾的, 这延缓了DUSP6造福人类的进程。该文将总结DUSP6在不同肿瘤和代谢模

型中的现有知识, 讨论造成这种矛盾的潜在原因, 并尝试给出一些解决方案。此外, 文章还将总结

其分子机制和潜在的转化应用。

Abstract       双特异性磷酸酶6; 细胞外信号调节激酶1/2; 丝裂原活化蛋白激酶; 肿瘤; 糖脂代谢
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and Lipid Metabolism
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Abstract       DUSP6 (dual specificity phosphatase 6), which is widely expressed in human tissues, is a member 
of the DUSP (dual specificity phosphatase) family that dephosphorylates ERK1/2 (extracellular signal-regulated kinase 
1/2) specifically. Due to its negative regulation in the MAPK (mitogen-activated protein kinase) signaling pathway, it 
has been shown to play an essential role in tumor proliferation, tumor resistance or drug sensitivity to chemotherapy, 
tumor diagnosis, metabolic homeostasis, which provides new ideas for drug target development. However, the effect 
of DUSP6 on tumors and glucose and lipid metabolism is diverse and partly contradictory. This delays the process of 
DUSP6 benefiting humanity. The present review will summarize the current knowledge of DUSP6 in different tumor 
and metabolic models, discuss the potential reasons for this contradiction, and try to give some solutions. This paper 
will also summarize its underline molecular mechanisms and potential translational applications.

Keywords        dual specificity phosphatase 6; extracellular signal-regulated kinase 1/2; mitogen-activated 
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DUSP (dual specificity phosphatase), a conserved 
phosphatase family, regulate related physiological ac-
tivities by dephosphorylating the serine/threonine and 

tyrosine residues of target substrates [1-3]. As a member 
of the DUSP family, DUSP6 accedes life activities by 
dephosphorylating and inactivating ERK1/2 [4]. DUSP6 
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is well known for its dual regulation of tumors [5]. For 
example, it is confirmed to inhibit tumorigenesis in 
ovarian cancer [6], endometrial adenocarcinoma [7], and 
lung cancer [8]. In contrast, it promotes human glioblasto-
mas [9], thyroid carcinomas [10], and endometrial adeno-
carcinoma [11] development. Similarly, DUSP6 also has 
inconsistencies in glucose and lipid metabolism [12]. 
Furthermore, the potential of DUSP6 in tumor progno-
sis diagnosis [13], tumor resistance [6,9], and other areas 
are gradually being tapped. Regardless, under various 
models and biochemical analyses, we will gradually 
understand more of the physiological functions and 
molecular mechanisms of DUSP6.

1   Members of DUSP family 
There are 25 members in the DUSP family with 

the loose enzyme pocket, which contain two types of 
phosphorylated residues [2]. An intervening cluster of 
basic amino acids is called the KIM (kinase-interact-
ing motif) in the N-terminal of partial DUSPs, which 
is important for mediating the enzyme-substrate inter-
action [1-2]. DUSP has the KIM, is generally classified 

as a typical one, also known as a MKP (MAP kinase 
phosphatase), otherwise is called an atypical one, 
but there are few exceptions [1-2]. DUSPs are widely 
involved in various life activities, especially tumors. 
Based on the classification, subcellular localization, 
substrates, and tumors regulation of DUSPs in mam-
malian cells, we have summarized the subcellular lo-
calization, substrates, and related tumors of some typi-
cal DUSPs and a few atypical DUSPs [1-2,5,14-18] (Table 
1). 

2   The structure-based molecular func-
tions of DUSP6

The human DUSP6 is located on chromosome 
12q21.33 [5], containing three exons and two forms of 
alternatively spliced transcripts [37]. The C-terminal of 
DUSP6 mainly depends on the catalytic site (Fig.1) 
to perform physiological functions [3,5]. Moreover, the 
NES (nuclear export signal), determines subcellular 
localization [5]. KIM, which relates to substrate identifi-
cation [5,38], and Cdc25/rhodanese-homology [3,5], are in 
the N-terminal of DUSP6 (Fig.1). DUSP6 is activated 

表1   典型DUSPs和少数非典型DUSPs的亚细胞定位、底物和相关肿瘤领域

Table 1   Subcellular localization, substrates, and related tumors of typical DUSPs and a few atypical DUSPs

DUSPs/MKPs
种类 亚细胞定位 底物 相关肿瘤

Type Subcellular localization Substrates Related tumors

DUSP1/MKP1 Typical Nuclear ERK, JNK, p38 NSCLC (non-small-cell lung cancer) [19]

DUSP2 Typical Nuclear ERK, JNK, p38 Bladder cancer [20], colorectal cancer [21]

DUSP4/MKP2 Typical Nuclear ERK, JNK, p38 Breast cancer [22], lung adenocarcinoma [23]

DUSP5 Typical Nuclear ERK Human neuroblastoma [24]

DUSP6/MKP3 Typical Cytoplasmic ERK NSCLC [25], pancreatic cancer [26]

DUSP7/MKPX Typical Cytoplasmic ERK Breast cancer [27]

DUSP8 Typical Cytoplasmic/nuclear JNK, p38 Colorectal carcinoma [28]

DUSP9/MKP4 Typical Cytoplasmic ERK, p38 Triple-negative breast cancer [29], gastric cancer [30]

DUSP10/MKP5 Typical Cytoplasmic/nuclear JNK, p38 Colorectal cancer [31], pancreatic cancer [32]

DUSP14/MKP6 Atypical Cytoplasmic/nuclear ERK, JNK, p38 Pancreatic cancer [33]

DUSP16/MKP7 Typical Cytoplasmic/nuclear JNK, p38 Burkitt’s lymphoma [34], hepatocellular carcinoma [35]

DUSP18 Atypical Cytoplasmic/nuclear JNK Osteosarcoma [36]

部分DUSPs的亚细胞定位和主要底物仍存在争议。 例如, DUSP18的亚细胞定位矛盾可能源于物种差异[36]。体内和体外微环境差异造成

DUSP14的主要底物不同[17]。 DUSP9 还可以在某些条件下调节JNK[30]。 这些“矛盾”应谨慎对待, 因为它们可能仅限于特定物种、细胞类型、

生理状态或微环境。

The subcellular localization and main substrates of the partial DUSPs are still controversial. For instance, the subcellular localization contradiction of 
DUSP18 may result from species differences [36]. The main substrates of DUSP14 are different, possibly owing to microenvironment differences in vivo 
and in vitro [17]. DUSP9 can also regulate JNK under certain conditions [30]. These “contradictions” should be treated with caution because they may be 
limited to a specific species, cell type, physiological state, or microenvironment.
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by conformational rearrangement after binding to the 
substrate [5]. The identification of this anchoring may be 
related to electrostatic effects [39]. Besides, the residues 61–
75 of KIM (the core is Arg65 which interacts with Asp319 
in ERK2), residues 161–177, and residues 348–381 of 
DUSP6 contribute to ERK2 binding for 135-fold, 15-fold, 
and less than 10-fold, respectively [40]. However, the latter 
is necessary for ERK2-induced DUSP6 activation [40]. 
In addition, there are some studies [41-44] discussed the 
molecular mechanism of DUSP6 in detail. 

3   The tissue distribution of DUSP6
DUSP6 is widely expressed in most tissues and 

cells of human beings. Unfortunately, at some tissues 
in humans, its mRNA and protein levels are not cor-
related well. For example, DUSP6 is mainly present in 
the liver and adipose tissue of RNA rather than protein. 
On the contrary, protein is dominant in pancreas and 
bronchus [data from The Human Protein Atlas (https://
www.proteinatlas.org)]. This character may be due to 
differences in post-transcriptional and post-translation-
al regulation of DUSP6 [45]. Bioinformatics tools, small 
molecule inhibitors such as BCI [(E)-2-benzylidene-
3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one] [46], 
and tissue-specific DUSP6 knockout animal models 
are possible options to study this inconsistency further. 

4   DUSP6 in the MAPK signaling pathway
The MAPK signaling pathway transmits signals 

through a three-stage enzyme-linked reaction, that is, 
the MAPKKK (MAPKK kinase) (such as Raf-1)-MAP-
KK (MAPK kinase) (such as MEK1)-MAPK (such as 

ERK1), thereby controlling cell proliferation, differen-
tiation, apoptosis, metabolism, and immune response [47]. 
The classic members of the MAPK, namely JNK1/2/3 
[c-Jun amino (N)-terminal kinases 1/2/3], ERK1/2, 
ERK5, and p38 isoforms (α, β, γ, and δ) [47]. Activation 
of the JNK and p38 MAPK is related to various patho-
physiological processes under stress and apoptosis, 
making them good biological factors that mediate up-
stream and downstream pathways [47-49]. ERK1/2 partici-
pate in specific genes’ transcription and expression and 
be widely applicable regulatory mechanisms in some 
disease’s treatment [50]. ERK5 has so much molecular 
weight that to control itself transcription by undergoing 
autophosphorylation of its C-terminal transcriptional 
activation domain [51-52]. ERK5 also participates in the 
regulation of tumor resistance and aggressive cancer 
phenotype, so that it plays an important role in tumori-
genesis and metastasis, and as a target for anticancer 
drug treatment [51].

With classic definition, DUSP6 acts as a phos-
phatase to regulate ERK1/2 negatively in the MAPK 
signaling pathway (Fig.2). Specifically, extracellular 
factors enter the cell through the RTK (receptor ty-
rosine kinase); then, the GEF (guanine nucleotide 
exchange factor) promotes the Ras protein to bind to 
GTP (guanosine triphosphate) to become an activated 
state. Subsequently, Ras-GTP activates the downstream 
Raf-MEK-ERK1/2 signaling pathway, and eventually, 
phosphorylated ERK1/2 enters the nucleus to activate 
transcription factors [53] (Fig.2). When ERK1/2 hyper-
activation is monitored in cells, DUSP6 will dephos-
phorylate the threonine and tyrosine residues of phos-

图1   DUSP6部分结构域的简单示意图(根据参考文献[3,5,16]改编)
Fig.1   A simple diagram of some domains of DUSP6 (modified from the references [3,5,16])
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phorylated ERK1/2 to block the transmission of signals 
and realize the negative regulation in the MAPK sig-
naling pathway (Fig.3).

5   The tumor and metabolic models of DUSP6
MKPs have crosstalk mechanisms between 

MAPK signaling pathways and other intracellular 
signaling modules, which makes MKPs have a broad 
range of regulatory effects, also making it challenging 
to explore specific functions [54]. Therefore, a complete 
tumor model, supplemented by clinical statistics, is 
necessary to explore DUSP6/MKP3 physiological 
functions in tumors and metabolic diseases in vivo and 
in vitro. Several models have been developed, for in-
stance, DUSP6-deficient or loss-of-function mutants 
cell line or mice, which shows high ERK1/2 activity 
owing to DUSP6 depleted; DUSP6-sufficient or gain-
of-function mutants cell line or mice, which shows low 
ERK1/2 activity results from DUSP6 over-abundance. 
They are the basis for exploring the function of DUSP6 

in specific diseases.

6   DUSP6 in tumor development
DUSP6 as a classic tumor suppressor has been 

broken (Table 2). Its role in tumorigenesis, tumor re-
sistance, and prognostic markers is gradually being 
explored (Table 2). Additionally, the role of DUSP6 in 
the different tumors is versatility (Table 2). These may 
explain many conflicting results foretimes. Although 
the sample is limited, we could summarize the rules 
preliminarily: (i) as a tumor suppressor, DUSP6 defi-
ciency becomes an important cause of tumorigenesis; 
(ii) on the contrary, DUSP6 overabundance guarantees 
its cancer-promoting ability; (iii) the role of DUSP6 
in tumor resistance and prognostic markers is diverse. 
The possible way to explore this mechanism is struc-
tural analysis. Whereas, due to the complexity and dy-
namic characteristics of the DUSP family structure, the 
analysis of its fine structure is challenging. Cryogenic 
cryo-electron microscopy is an effective method for 

GAP, GTP酶激活蛋白; GDP, 二磷酸鸟苷; GF, 生长因子; P, 磷酸基团; TF, 转录因子。

GAP, GTPase-activation protein; GDP, guanosine diphosphate; GF, growth factor; P, phosphate; TF, transcription factor.
图2   DUSP6在MAPK信号通路中负调控简单示意图

Fig.2   A simple diagram of the negative regulation of DUSP6 in the MAPK signaling pathway
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图3   DUSP6去磷酸化ERK1/2简单示意图(根据参考文献[3,5]改编)

Fig.3   A simple diagram of DUSP6 dephosphorylates ERK1/2 (modified from the references [3,5])
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revealing its high-resolution three-dimensional delicate 
structure and exploring the compensatory properties of 
family members from the structure.

The factors, include the tumor’s microenviron-
ment, specificity, adaptability to regulation, and differ-
ences in experimental controls, make DUSP6 a ver-
satile tumor regulator. Simultaneously, there are some 
more specific factors: (i) DUSP6 provides different sig-
nal crosstalk. For instance, the murine dusp6 promoter 

contains a β-catenin-binding site (not in humans), 
making dusp6 a downstream target of the β-catenin 
signaling to regulate ERK. Therefore, in mouse hepa-
toma cells, dusp6 provides signal crosstalk between 
Wnt/β-catenin and Ras/MAPK [69]. This also reminds 
us that we should consider species differences when 
exploring the physiological functions of DUSP6; (ii) 
the expression of DUSP6 is regulated by many factors. 
For example, in pancreatic cancer [67] and esophageal 

表2   DUSP6 在人类肿瘤发展中的各种作用

Table 2   Various roles of DUSP6 in human tumor development
DUSP6角色 肿瘤类型 DUSP6表达 结果

Role of DUSP6 Tumor type DUSP6 expression Results

Potential tu-
mor prognostic 
marker

Gastric cancer

Hepatocellular carcinoma

High (R & P) [55]

High (P) [13]

High expression of DUSP6 protein predicts poor overall and progres-
sion-free survival [55] 
High expression of DUSP6 protein in tumor tissue when compared 
with the peritumor tissue is significantly associated with the recurrence 
of tumor [13] 

NSCLC Low (R) [56-57] Low expression of DUSP6 mRNA reveals poor prognosis [56] and has 
a significantly lower overall survival rate than other patients with lung 
adenocarcinomas [57] 

Regulating tumor 
resistance

Cervical adenocarcinoma

Human glioblastomas

Ovarian cancer

-

High (R & P) [9]

Low (P) [6]

DUSP6 deficiency reduces the tumor cells viability and increases drug 
sensitivity [58] 
DUSP6 overexpression increases tumor resistance to cisplatin-mediat-
ed cell death [9] 
DUSP6 insufficient results in increased resistance to cisplatin in ovar-
ian cancer cells [6] 

Tumor promotion Acute myeloid leukemia
Breast cancer

High (P) [59]

-
DUSP6 knocking down makes tumor cells grow slowly [59] 
DUSP6 as a scaffolding protein to promote cancer growth [60]; DUSP6 
depleted suppresses cells proliferation, migration, invasion, and arrests 
cells at G0/G1 phase [61] 

Human glioblastomas
Thyroid carcinoma

High (R) [9]

High (R [10,62] & P [62])
DUSP6 upregulation exacerbates the malignant phenotype [9] 
DUSP6 knocking down reduces neoplastic properties [10,62] 

Tumor suppres-
sion

Esophageal squamous cell 
carcinoma

Low (R & P) [63] DUSP6 overexpressing promotes tumor cells apoptosis [63] 

Lung cancer Low (R & P) [8] DUSP6 overabundance inhibits tumor cells growth [8]

Ovarian cancer Low (P) [6] DUSP6 restoration inhibits cell proliferation, anchorage-independent 
growth ability, and tumor development [6]

Pancreatic cancer Low (R & P) [64-67] DUSP6 acts as a tumor suppressor in pancreatic cancer [64-67]

Prostate cancer Low (R & P) [68] Forced expression of DUSP6 suppresses the invasion and growth of 
tumor cells [68]

Tumor 
suppression/
promotion

Endometrial adenocarci-
noma

Low (P) [7]/
High (P) [11]

DUSP6 overexpression significantly attenuates tumor cell growth, 
invasion, migration abilities [7]; DUSP6 overexpression enhances tumor 
cell growth [11]

R, mRNA; P, protein。现阶段, DUSP6表达水平的研究聚焦于mRNA或蛋白, 但其mRNA水平与蛋白水平有时并不很匹配, 这表明DUSP6可能存

在转录后调控[6]。此外, 几乎没有研究报道DUSP6酶活性与肿瘤的关联性, 这可能因为酶活性变化相较于mRNA和蛋白质更为迅速, 且其受温

度等外界因素影响大, 因而相关研究难度高。

R, mRNA; P, protein. At present, the research on the expression level of DUSP6 focuses on mRNA or protein, but its mRNA level and protein level 
sometimes do not match very well, which indicates that DUSP6 may have post-transcriptional regulation [6]. In addition, few studies have reported 
the relationship between DUSP6 enzyme activity and tumors, which may be difficult to study because the enzyme activity changes more rapidly than 
mRNA and protein, and it is greatly affected by external factors such as temperature.
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squamous cell carcinoma [63], promoter hypermeth-
ylation leads to loss of DUSP6 expression. While in 
ovarian cancer [6], DUSP6 protein deficiency is due to 
the ubiquitination/proteasome degradation mediated 
by high intracellular ROS (reactive oxygen species) 
accumulation; (iii) DUSP6 has other functions besides 
ERK1/2 negative regulator. For instance, in NSCLC [56], 
DUSP6 depletion shows increased phosphorylation of 
ERK5 instead of ERK1/2 and expression of SMAD2/3, 
thereby destroying the cellular tubulin network and ac-
tin-stress fibers and ultimately affecting the interaction 
cadherin-catenin complexes at the adherent junctions. 
Meanwhile, in breast cancer [60], DUSP6 binds with 
progesterone receptors-B’s common docking domain 
to bridge PR-B and casein kinase II to act as a scaffold 
protein to promote tumor growth. In summary, DUSP6 
is so fascinating and elusive in terms of tumor regula-

tion.

7   DUSP6 in metabolism
7.1   DUSP6 in glucose and lipid metabolism

DUSP6 is not only limited to tumor regulation, 
but also plays an important role in glucose and lipid 
metabolism (Fig.4). DUSP6 deficiency affects sys-
temic glucose tolerance in mice [12]. dusp6 and dusp8 
double knockout mice increase energy expenditure in 
mice to protect them from obesity induced by a high-
fat diet, reduce their serum triglyceride, lipid content 
in the liver, and visceral adipose tissues and improve 
their glucose tolerance [70]. This resistance to high-fat 
diet-induced obesity by increasing energy expendi-
ture in mice is further confirmed in dusp6 deficiency 
mice, which reveals the mechanism is that the dusp6-
insufficient leads to improvement of the gut microbiota 

图4   DUSP6在肿瘤发展和糖脂代谢中作用简单示意图

Fig.4   A simple diagram of DUSP6 in tumor development and glucose and lipid metabolism
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response to diet-mediated stress [71]. As a downstream 
component of the Dex (dexamethasone) signal, dusp6 
regulates gluconeogenic genes transcription, hepatic 
glucose output, and lipid metabolism with the FOXO1 
(forkhead box protein O1) participation [72-74]. More-
over, DUSP6 mediates TCR (T cell receptor)-engaged 
glycolysis by TCR–JNK/p38–IL-21 pathway instead 
of the classic ERK1/2 pathway [75]. dusp6 increases the 
resistance of murine podocytes to inflammation and 
apoptosis induced by high glucose [76]. 

The above research mainly focuses on the active 
role of DUSP6 in glucose and lipid metabolism. How-
ever, DUSP6 is also regulated by other factors. Under 
the stimulation of serum growth factors, DUSP6 degra-
dation and phosphorylation are mediated by MEK/ERK 
and PI3K (phosphoinositide 3-kinase)/mTOR (mam-
malian target of rapamycin) signaling pathways, with 
the core are Ser159 & Ser197 and Ser159 of DUSP6 
N-terminal domain, respectively [77-78]. This once again 
proves that DUSP6 has a signal crosstalk mechanism. 
Additionally, DUSP6 affects cell glucose outputting, 
and its degradation is regulated by the insulin mediated 
MEK/ERK pathway in the liver [79]. All of these may 
mean that DUSP6 may be in the middle position in the 

glucose and lipid metabolism and together constitute a 
complete feedback loop. For a more intuitive display, 
there is a simple table to show the regulation of DUSP6 
in some regions (Table 3). However, the first problem 
we need to solve is that DUSP6 also has inconsistencies 
in glucose and lipid metabolism [12]. This may be due to 
the genetic background of the mice, the selected high-
fat feeding standards, and the different measurement 
methods. Therefore, it may be a solution to formulate 
the gold standard for mouse experiments in the field of 
glucose and lipid metabolism as soon as possible.
7.2   DUSP6 in other metabolism pathways

Currently, the capabilities of DUSP6 in other me-
tabolism fields are gradually being valued. A rapid pos-
itive feed-forward and a later negative feed-back loop 
regulation of DUSP6 controls PDGF (platelet-derived 
growth factor)-induced ERK activation [80]. After acute 
exercise, skeletal muscle but not adipose tissue DUSP6 
is reduced by 43% and remains below pre-exercise 
level after two hours recovery with unknown mecha-
nism [81]. Another study confirms that DUSP6 plays a 
role in skeletal muscle [82], with the mechanism is that 
Six1 regulates ERK1/2 pathway during regeneration 
by control DUSP6 transcription directly. In hippocam-

表3   调控DUSP6的因子、因素或通路

Table 3   Regulators, factors or pathways regulating DUSP6
调控因子/因素/通路 结果 相关领域

Regulators/factors/pathways Results Related regions

Acute exercise

DUSP6 promoter hypermethylation

Acute exercise reduces DUSP6 mRNA levels, which may 
be related to Dex
Loss of DUSP6 mRNA expression

Other metabolisms [81]

Esophageal squamous cell carcinoma [63],
pancreatic cancer [67]

Fms-like tyrosine kinase 3 with inter-
nal tandem duplication, FLT3 ITD
Growth factor signaling pathway

FLT3 ITD sustains high DUSP6 protein expression

DUSP6 is phosphorylated and degraded upon growth factor 
stimulation by MEK/ERK-dependent manner [78] and PI3K/
mTOR [77]

Acute myeloid leukemia [59]

Glucose and lipid metabolism [77-78]

Hypoxia Hypoxia increases DUSP6 mRNA endogenous level in a 
HIF-1-dependent manner

Malignant melanoma and colon adenocar-
cinoma cells [45]

Insulin MEK/ERK pathway mediates insulin-promoted degradation 
of DUSP6 protein

Glucose and lipid metabolism [79]

ROS accumulation

Wnt/β-catenin signaling pathway

Loss of DUSP6 protein expression is mediated by ubiqui-
tination degradation mediated by high intracellular ROS 
accumulation
dusp6, which as a downstream target of β-catenin, provides 
signal crosstalk between Wnt/β-catenin and Ras/MAPK

Ovarian cancer [6]

Mouse hepatoma cells [69]
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pal neuronal cell lines and immature cortical neuronal 
cultures, dusp6 sufficiency blocks the over-activation 
of ERK and thus protects these cells from oxidative 
toxicity [83]. Additionally, dusp6 deficiency significantly 
reduces AMPA receptor-induced oligodendrocyte death 
by enhancing ERK1/2 phosphorylation [84]. DUSP6 is 
widely expressed in tissues and organs but has been 
studied in limited areas. More data need to be provided 
on DUSP6 in specific organizations to completely de-
scribe the blueprint of DUSP6’s mechanism of action.

8   The relationship between glucose and 
lipid metabolism and tumor development

Glucose and lipid metabolism and tumors are not 
separated but affect each other. On the one hand, the 
occurrence of cancer is often accompanied by abnor-
mal lipid levels, which may be due to the high energy 
requirements for tumor cell proliferation and metas-
tasis [85]. For example, the levels of TC (total choles-
terol) and LDL-C (low-density lipoprotein cholesterol) 
in breast cancer patients are significantly higher, but 
HDL-C (high-density lipoprotein cholesterol) is lower 
than those in healthy people [86]. Patients (41.3%) with 
colorectal cancer have significantly higher levels of 
LDL-C but not HDL-C [87]. Half of the patients with 
ALL (acute lymphoblastic leukemia) show dyslip-
idemia, which is manifested by increased serum TG 
(triglyceride) and LDL-C, and decreased HDL-C, 
meantime, all of them exhibit lower plasma Apo A-I 
(apolipoprotein A-I) and higher Apo B-100 and C-II 
levels [88]. High expression of Apo E is detected in gas-
tric cancer [89]. On the other hand, abnormal glucose 
and lipid metabolism may induce and promote tumors. 
For instance, the accumulation of linoleic acid pro-
motes breast cancer cell metastasis [90]. The cholesterol 
metabolite 27-hydroxycholesterol stimulates prostate 
cancer cell proliferation [91]. Apo E is related to the 
metastasis of lung adenocarcinoma [92]. Glycogen ac-
cumulation accelerates the occurrence of liver tumors 
in a dose-dependent manner; meanwhile, eliminating 
it abrogates liver growth and cancer incidence [93]. Al-
though the causal relationship is still unclear, it can be 

confirmed that the two often threaten human nutrition 
and health at the same time. From another perspective, 
the development of drug targets for the glucose and 
lipid metabolism pathway is a new idea for treating tu-
mors.

9   Summary and prospects
Tumors and metabolic diseases seriously affect 

human health and well-being. Some tumor regula-
tors are presented in family form, such as the DUSPs. 
DUSPs have many members, with high structural con-
sistency, wide distribution, and diverse functions. They 
play a vital role in cell signal transduction, epigenetic 
regulation, transcription factors secretion, and stem cell 
proliferation. Analogously, these also imply that other 
members of the DUSPs family with highly conserved 
structures may also have the characteristic of diversity. 
In addition, through the crosstalk mechanisms of the 
signaling pathways, a subset restrains and compensates 
for each other. However, they are rare family factors 
working peacefully and gently.

DUSP6 regulates ERK1/2 negatively in the 
MAPK signaling pathway to be a dual regulator in tu-
mor and metabolism is a classic definition. In particu-
lar, when the monitor detects that ERK1/2 is hyperacti-
vation, DUSP6 dephosphorylates and inactivates them, 
thereby stabilizing cell growth and glucose and lipid 
metabolism in a suitable range. Besides, DUSP6 is ex-
tremely widespread in mammalian tissues and cells. In-
terestingly, the mRNA and protein levels of DUSP6 are 
not correlated very well in human tissue. Furthermore, 
DUSP6 is widely involved in treating some tumors and 
is a very promising tumor prognostic biomarker in cer-
tain tumors. Unfortunately, the definition of the causal-
ity of DUSP6 on tumor and metabolism regulation is 
very vague, which has caused us trouble to explore its 
role further. The expression of DUSP6 in tumors and 
glucose and lipid metabolism is a dynamic equilibrium 
process, which is greatly affected by the internal en-
vironment; therefore, the dynamic expression level of 
DUSP6 may be a breakthrough in the future explora-
tion of the causal relationship between DUSP6 and tu-



1192 · 综述 ·

morigenesis and glucose and lipid metabolism. Never-
theless, existing evidence breaks the classic definition 
of DUSP6 and expands it. In conclusion, the extensive 
exploration and rational use of DUSP6 will benefit all 
humanity in the future.
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