

陆艺文,中山大学孙逸仙纪念医院乳腺肿瘤中心,副研究员、硕士生导师,广东省 医疗行业协会乳腺肿瘤内科管理分会常委。主要研究方向为免疫微环境调控炎 症相关疾病,以第一作者身份在Cell、Nature Cell Biology等国际知名杂志上发表 论文,获得国家自然科学基金青年项目等项目等资助。

三级淋巴样结构与抗肿瘤免疫

翁小淇 苏士成 陆艺文* (中山大学孙逸仙纪念医院乳腺肿瘤中心,广州 510120)

摘要 三级淋巴样结构(tertiary lymphoid structure, TLS), 又称异位淋巴样器官(ectopic lymphoid organ, ELO), 是形成于非淋巴组织中的异位淋巴样器官, 通常发生在慢性炎症包括自身免疫病、感染性疾病和肿瘤等部位。TLS与淋巴结等淋巴器官有相似的结构, 包含T细胞、B细胞、滤泡树突状细胞等多种免疫细胞。在肿瘤中, TLS可以作为免疫细胞进入肿瘤组织的通道, 多与较好治疗反应和预后相关。诱导肿瘤组织中TLS形成是潜在的肿瘤治疗新策略。该文系统地综述了TLS的组成、结构、在肿瘤中的功能、与肿瘤预后的关联以及靶向TLS的相关治疗方案。

关键词 三级淋巴样结构; 肿瘤; 预后; 抗肿瘤免疫

Tertiary Lymphoid Structure and Antitumor Immunity

WENG Xiaoqi, SU Shicheng, LU Yiwen*

(Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China)

Abstract TLSs (tertiary lymphoid structures), also known as ELOs (ectopic lymphoid organs), are organized aggregates of immune cells that localize in non-lymphoid tissues at sites of chronic inflammation, such as autoimmune diseases, infectious diseases and tumors. The structure of TLS is similar with that of lymph node, which composes of T cells, B cells, follicular dendritic cells, etc. TLS serves as an entry for immune cells to infiltrate in tumor tissues. The presence of TLS commonly correlates with a better therapeutic response and a longer survival. Here, this article reviewed the composition, structure, function, the role of TLS in tumor prognosis and therapeutic strategies targeting TLS.

Keywords tertiary lymphoid structure; tumor; prognosis; antitumor immunity

收稿日期: 2022-02-08 接受日期: 2022-02-21

国家自然科学基金(批准号: 91942309、82125017、92057210、82002780)和广州市科技计划项目(批准号: 202103000070)资助的课题

*通讯作者。Tel: 020-87332022, E-mail: luyw8@mail.sysu.edu.cn

Received: February 8, 2022 Accepted: February 21, 2022

This work was supported by the National Natural Science Foundation of China (Grant No.91942309, 82125017, 92057210, 82002780) and the Science and Technology Program of Guangzhou (Grant No.202103000070)

^{*}Corresponding authors. Tel: +86-22-87332022, E-mail: luyw8@mail.sysu.edu.cn

1 TLS简介

三级淋巴样结构(tertiary lymphoid structure, TLS)是后天产生于非淋巴组织中的有组织的免疫 细胞聚集结构,在慢性炎症疾病如自身免疫病和感 染性疾病组织中最早被发现,浸润至慢性炎症部位 的淋巴细胞自发形成含有生发中心(germinal center, GC)的B细胞滤泡区以及含有树突状细胞(dendritic cell, DC)和高内皮微静脉(high endothelial venule, HEV)的T细胞区。该过程被称为淋巴新生(lymphoid neogenesis)^[1-3]。

肿瘤中的TLS最早在非小细胞肺癌⁽⁴⁾和黑色素 瘤^[5]中被发现,随着研究的开展,不同肿瘤中的TLS 陆续被报道,TLS可见于肿瘤的间质、侵袭性边缘 或中心部位,更多出现在肿瘤的侵袭性边缘或间 质^[6]。TLS的结构类似于次级淋巴器官(secondary lymphoid organ, SLO),根据细胞聚集区域,可以分为 T细胞区、B细胞区,T细胞区含有成熟DC和CD3⁺T 细胞,其附近的B细胞区具有GC特征,HEV和淋巴管 (lymphatic vessel, LV)则位于TLS的边缘^[7-8]。

2 TLS的主要组成及其功能

TLS主要由T细胞、B细胞、DC、滤泡树突状 细胞(follicular dendritic cell, FDC)、滤泡网状细胞 (follicular reticular cell, FRC)和HEV等组成, 各类细胞都具备重要的功能。

2.1 T细胞

TLS中的T细胞包括CD8⁺T细胞和CD4⁺T细胞。 肿瘤免疫微环境中CD8⁺细胞毒性T淋巴细胞(cytotoxic T lymphocyte, CTL)的功能通常会受抑制^[9]。在 非小细胞肺癌中,研究者发现TLS中有一群高表达 PD1的CTL,其产生杀伤性细胞因子的能力降低,却 高表达趋化因子CXCL13。CXCL13的受体CXCR5 主要表达在B细胞和滤泡辅助T细胞中,说明TLS中 一部分CTL具备募集B细胞和滤泡辅助T细胞的新 功能^[10-11]。

在TLS中,辅助T细胞(helper T cell, Th)倾向于 Th1分化^[12]。滤泡辅助T细胞(follicular T helper cell, Tfh)主要定位于TLS-GC附近^[13],与亮区B细胞激活 相关^[14]。乳腺癌中存在一群CXCR5⁻CD4⁺ T细胞,表 达*BCL6、CD200、PD1、ICOS*等Tfh相关基因,是 TLS中分泌CXCL13的主要细胞,研究者将其命名为 TfhX13^[15]。TfhX13与TLS的存在显著相关^[13],并且 TfhX13能够招募B细胞并促进其向浆细胞(plasma cell, PC)和记忆B细胞分化^[15],说明TfhX13可能在TLS形成过程中具有重要作用。

在乳腺癌^[16]、前列腺癌^[17]中,调节性T细胞(regulatory T cell, Treg)也存在于TLS中。Treg被选择性地招募到TLS中并可能通过抗原提呈被DC激活^[16], 且Treg能抑制TLS中DC和T细胞功能^[18]。值得注意的是,在小鼠模型中Treg耗竭会引发瘤内HEV的新 生^[19],提示Treg可能具有通过抑制HEV形成从而阻 碍TLS生成的功能。

2.2 B细胞

在TLS中有大量B细胞聚集于TLS-GC中。TLS 中B细胞的测序数据表明,它们具有GC-B细胞基因 特征,即B细胞发生了抗原驱动的体细胞高频突变、 抗体亲和力的成熟和类别转换^[14,20-22]。此外,我们前 期的研究发现,在新辅助化疗后的乳腺癌组织中有 一群以ICOSL⁺为特征的B细胞亚群,它们多定位在 TLS中,并且与T细胞直接接触^[23]。

TLS中的B细胞还可能具有抗原提呈功能。在 卵巢癌远处转移灶中,非典型记忆B细胞(CD27⁻)高 表达MHCI、MHCII分子及CD40,其与CD8⁺T细胞 的共同出现与更好的预后相关^[21]。在黑色素瘤中 亦有相似发现,高表达MHCI、MHCII分子的B细胞 和T细胞的共同出现与更强的免疫检查点阻断治疗 应答率、更长的总生存期相关,而在缺乏TLS的肿 瘤中的T细胞功能被抑制^[24]。此外,有研究者提出, TLS中存在一种抗原提呈B细胞(antigen-presenting B cell, BAPC; CD86^{hi}CD21^{low}), BAPC定位于TLS的 淋巴滤泡中,并在TLS数量较多的肿瘤中富集。从 肿瘤引流淋巴结中分离的BAPC在体外能诱导自体 T细胞反应,局部激活幼稚T细胞并实现T细胞表型 转换^[25]。

TLS中的PC(CD138⁺)数量与B细胞的数量、TLS 的数量均呈正相关^[22,26]。有研究报道直接浸润肿瘤 组织的PC与预后负相关^[27]。然而,在乳腺癌和高级 别卵巢癌中TLS-PC与更长的总生存期相关^[28-29]。

2.3 树突状细胞(DC)

成熟DC,即表达溶酶体相关膜糖蛋白(lysosomeassociated membrane protein, LAMP)的DC可以作为识 别肿瘤组织中TLS的特征之一^[4],TLS中的DC与肿瘤 组织中的DC可能具有不同活化状态。在肾透明细 胞癌中,CD8⁺T细胞的活化水平与TLS-DC的数量呈 正相关,而与TLS之外的DC无关^[30],同时CD8⁺T细胞的功能衰竭与高密度的失能DC相关^[31],原因可能是TLS之外的DC抗原提呈功能受到抑制。

2.4 滤泡树突状细胞(FDC)

FDC促进抗原提呈至B细胞并促进B细胞表达 高活性的抗体,其出现是TLS-GC成熟的重要事件^[32]。 肿瘤中FDC的前体细胞仍未知,但有研究表明,在小 鼠皮下注射淋巴结来源细胞诱导形成的TLS中,激 活的基质细胞与免疫细胞相互作用,且其可能分化 为FDC^[33]。

2.5 滤泡网状细胞(FRC)

FRC形成紧密的网状支架,是TLS中主要的基质支持细胞。

2.6 高内皮微静脉(HEV)

HEV是一种表达外周淋巴结血管地址素(peripheral lymphonode vascular addressin, PNAd)的 特殊血管,幼稚淋巴细胞和中央记忆淋巴细胞由此 经循环作用进入淋巴器官^[34]。HEV可以作为识别 TLS的特征性标志^[35],HEV的数目与肿瘤浸润淋巴 细胞数呈正相关,含有HEV的肿瘤高表达CCL19、 CCL21、CCR6和L-选择素,说明HEV是募集淋巴 细胞的通道^[36]。

3 TLS与肿瘤预后的关系

目前报道中, TLS与大部分肿瘤如非小细胞肺 癌^[4,37]、结直肠癌^[32,38-39]、黑色素瘤^[40-41]、乳腺癌^[13]、 膀胱癌^[42-43]、头颈鳞状细胞癌^[14]、胃食管腺癌^[26]等 的良好预后相关^[44]。TLS见于各个分期的肿瘤,是 独立的预后预测因素(表1)。在非小细胞癌中,对于 早期和晚期的癌症患者,高密度TLS患者组的总生 存期(overall survival, OS)、无复发生存期(recurrence free survival, RFS)、无病生存期(disease free survival, DFS)均较低密度组更长^[4,37,45]。此外, TLS还被报道 与免疫治疗应答相关,在接受免疫检查点阻断(immune checkpoint blockade, ICB)治疗的胃癌^[46]、非小 细胞肺癌^[47]、晚期膀胱癌^[48-49]、黑色素瘤^[24,50]和软组 织肉瘤^[51]患者中,高密度TLS与更好的治疗反应和 预后相关。

但是,在部分研究中,TLS的存在与更差的预后 相关,如肝癌中TLS与肿瘤进展相关^[52],ER⁺HER2⁻ 乳腺癌中TLS与更高的肿瘤分期相关^[53]。在肾透 明细胞癌中,CXCL13和TLS均与无进展生存期 (progression free survival, PFS)和OS呈负相关^[54],且 SOBOTTKA等^[55]在ICB无应答患者观察到了更高密 度的TLS。TLS对预后的不同影响可能源于TLS分 化程度、空间位置等方面的差异。

3.1 不同TLS分化程度与预后的关系

肿瘤中TLS存在不同的分化阶段,它们可能在 肿瘤免疫中发挥不同的作用。POSCH等^[32]依据是否 存在FDC和B细胞的分化情况,将肿瘤中的TLS分为 三个连续的发展阶段。早期TLS(early-TLS、E-TLS、 CD21-CD23-):密集的淋巴细胞簇,不含有FDC;初 级滤泡样 TLS(primary follicle-like TLS, PFL-TLS, CD21⁺CD23⁻):存在FDC和B细胞作用网络,但不含 有GC; 次级滤泡样TLS(secondary follicle-like TLS, SFL-TLS, CD21⁺CD23⁺):含有FDC和活跃的GC。结 直肠癌和肝癌中,相比于肿瘤中含有E-TLS的患者, 肿瘤中含有成熟TLS的患者呈现更低的复发率^[32,56], 同时另一项研究观察到,在早期肝癌或癌前病变中 仅能观察到未成熟TLS(几乎为E-TLS), 且伴随免疫 抑制分子(IL10RA、TGFB1、LILRB2)的过表达[57], 这些结果表明成熟TLS可能比早期TLS有更强的抗 肿瘤功能。此外, TLS中Treg的比例也会影响其功 能。肺腺癌小鼠中的TLS含有大量Treg^[18]。在黑色 素瘤中亦发现, TLS通过招募Treg细胞起到免疫抑 制作用[58]。

3.2 不同空间位置的TLS与预后的关系

TLS可以分布在肿瘤组织中、肿瘤间质内或肿 瘤旁。在肝癌中,高密度的癌内TLS与低复发率相关, 而癌旁非肿瘤组织内TLS无此预后价值^[56],乳腺癌中 高密度的癌周TLS则与最差的DFS和OS相关^[59]。对 962位肝内胆管细胞癌患者的回顾性分析也有相似 发现,高密度的癌内TLS指示良好预后,而癌周TLS 的存在与不良预后相关,进一步探究,在癌内TLS中, CD4⁺Bcl6⁺ Tfh与CD4⁺ T细胞显著多于癌周TLS,提 示不同位置的TLS对预后的影响可能与其组成不同 相关^[60]。

肿瘤原发灶和转移灶中的TLS也可能具有不同 功能。在结直肠癌转移性肺癌中,TLS的存在与更 长的OS相关,而肾细胞癌转移性肺癌却得出相反的 结论,进一步分析发现,结直肠癌转移性肺癌TLS中 有更多的成熟DC且其具有Th1极化基因特征,而肾 细胞癌转移性肺癌表达Th2极化、免疫抑制性的基 因特征^[61]。

		参考文献	Reference		[37]	[4]	[22]	[22]	[62]	[47]	[59]	[53]	[13]		
		对辅助治疗影响	Impact on adjuvant	therapies	NA	٩X	NA	Newadjuvant chemotherapy: pro- longed DSS, TLS ¹⁰ vs TLS ¹⁶ HR=4.2 (1.9-9.5)	NA	Anti-PD1: associ- ated with better MPR	A	NA	Newadjuvant	chemotherapy: as-	sociated with better pCR
		对预后影响	Impact on prognosis		Prolonged RFS, HR=0.28 (0.13-0.58)	Prolonged OS, TLS ^b vs TLS th HR=1.88 (1.21-2.96); Prolonged DSS, TLS ^b vs TLS th HR=3.34 (1.64-8.68); Prolonged DFS, TLS ^b vs TLS th HR=2.11 (1.19-3.89)	No significant influence on DSS	NA	Prolonged OS, HR=0.71 (0.62-0.81)	NA	Shortened OS, TLS ^{Ia} vs TLS ^{Ia} HR=0.277 7 Shortened DSS, TLS ^{Ia} vs TLS ^{Ia} HR=0.285 2	Prolonged DFS in HER2 ⁺ breast cancer, $P=0.044$	NA		
	S	主要抗肿瘤细胞	Major antitumor	cell	NA	NA	B cell	NA	Mature DC, CD8 ⁺ T cell	NA	NA	NA	NA		
项后的关系	aor prognosi	TLS位置	TLS loca-	tion	NA	Tumor	NA	NA	Tumor	NA	Peritumor	Peritumor	Tumor		
ē1 肿瘤TLS与3	le 1 TLS in tun	阳性患者率%	% of positive	patients	NA	NA	NA	NA	54	78	87.5	37.5	NA		
н Ч	Tat	检测标志物	TLS markers		CD3, CD20	CD3, CD20, DC-Lamp	CD3, CD20, DC-Lamp	CD3, CD20, DC-Lamp	CD3, CD8, CD20, DC- Lamp, PNAd	NA	CD4, CD8, FoxP3	NA	CD3, CD4,	CD8, CD20,	CD23, CXCL13
		TLS检测方法	Methods of TLS	detection	mIF	IHC	IHC	IHC	IHC	HE	IHC	HE	IHC		
		患者数量	Number of	patients investi- gated	150	74	74	122	362	20	112	248	966		
		肿瘤分期	Tumor	stage	I-IV	Early	ΙΗ	IIA-IIIB	VI-I	I-IIIA	I-IIIC	111-1	I-IV		
		肿瘤类型	Tumor type		Lung cancer						Breast cancer				

630

续表1 ■ 抽瘤 类型	肿瘤分期	患者粉量	TI.S检测方法	检测标志物	阳性患者率%	TIS位置	主要抗肿瘤细胞	对预后影响	对辅助治疗影响	参考文献
Tumor type	Tumor stage	Number of patients investi- gated	Methods of TLS detection	TLS markers	% of positive patients	TLS loca- tion	Major antitumor cell	Impact on prognosis	Impact on adjuvant therapies	Reference
Hepatocellular carcinoma	NA	82	12-CGS	AN	18.0	Liver pa- renchyma	NA	Increased risk for late re- currence $P=0.03$, decreased OS after resection $P=0.01$	NA	[52]
	VI-I	273	HE	NA	47.0	Tumor	NA	Decreased risk for early recurrence, HR=0.46	NA	[56]
Intrahepatic chol- angiocarcinoma	I-IV	39	mIHC	CD3, CD8, CD20	NA	Peritu- mor, in- tratumor	NA	Prolonged OS, P<0.01	NA	[60]
Melanoma	AI-III	32	mIF	CD4, CD8, CD20, CD21, FoxP3	NA	ΝΑ	TLS-B cell	NA	Anti-PD1: associ- ated with higher response rate	[50]
	N	160	IHC	CD3, CD8, CD20,	NA	NA	CD8+T cell, CD20+B cell	NA	Anti-PD1: pro- longed OS, P=0.0012	[24]
Sarcoma	NA	93	IHC	CD3, CD20, DC-Lamp	11.8	AN	B cell	NA	Anti-PD1: associ- ated with higher response rate and DFS	[51]
Head and neck squamous cell carcinoma	VI-I	50	IHC	CD4, CD20	NA	Peritu- mor, in- tratumor	GC-B cell	Prolonged PFS, HR=0.46	NA	[14]
Bladder cancer	III-II	542	IHC	CD3, CD8, CD79a, CD68	NA	Peritu- mor, in- tratumor	NA	Prolonged DSS, HR=0.32 (0.18-0.55)	NA	[42]
	Advanced	348	HE	NA	NA	AN	NA	Patients without ICB treatment: no significant influence on OS	Patients with ICB treatment: pro- longed OS, HR=0.8 (0.68-0.94)	[48]
Urothelial cancer	⊟	24	IF	CD3, CD23	NA	Tumor	NA	NA	Anti-PD1+anti- CTLA4: associated with better pCR	[49]

头水1 肿瘤类型	肿瘤分期	患者物量	TLS检测方法	检测标志物	阳性患者率%	TLS位置	主要抗肿瘤细胞	<u> </u>	对辅助治疗影响	参考文献
Tumor type	Tumor	Number of	Methods of TLS	TLS markers	% of positive	TLS loca-	Major antitumor	Impact on prognosis	Impact on adjuvant	Reference
:	stage	patients investi- gated	detection		patients	tion	cell)	therapies	
Colorectal cancer	III-II	109	IF	CD20, CD21, CD23, CXCL13	NA	NA	NA	Decreased risk for recur- rence, SFL-TLS ^b vs SFL- TLS th SHR=3.73 (1.39- 10.00)	NA	[32]
	III-III	351	IHC	CD3	78.6	Invasive margin	NA	Stage II: prolonged DFS, HR=0.62 (040-0.97)	NA	[39]
	I-IV	28	IHC	CD3, CD20, CD21	NA	Peritu- mor, in- tratumor	NA	Associated with higher tumor stage, $P < 0.001$	NA	[38]
Gastric cancer	I-IV	19	IHC	CD20	47.0	NA	NA	NA	Anti-PD-1: prolonged OS, P=0.045	[46]
Clear cell renal cell carcinoma	NA	100	HE	NA	40.0	NA	NA	Associated with higher PD- L1 expression	NA	[54]
	NA	500	12-CGS	NA	NA	NA	NA	Prolonged PFS P <0.001 Prolonged OS P <0.001	NA	[54]
	VI-I	×	HE	ΝA	NA	NA	NA	NA	Anti-PD1: associ- ated with higher non-response rate	[55]
Metastatic mela- noma	IIIB-IV	64	mIF	CD8, CD20, PNAd, Ki67	47.0	Tumor	NA	Prolonged OS, HR=0.51 (0.27-0.97)	NA	[41]
	IV	120	12-CGS	ΝA	NA	Peritu- mor, in- tratumor	NA	Prolonged OS, $P=0.008$	NA	[40]
Lung metastases of colorectal cancer	VI-I	140	IHC	CD3, CD8, CD20, DC- Lamp, PNAd	NA	Tumor	CD8 ⁺ T cell, LAMP ⁺ DC	Prolonged OS, HR=0.54 (0.39-0.76)	NA	[61]
	VI-I	52	IHC	CD3, CD8, CD20, DC- Lamp, PNAd	NA	Tumor	CD8 ⁺ T cell, LAMP ⁺ DC	Shortened OS, HR=2.68 (1.58-4.57)	NA	[61]
IF: 免疫荧光; IHC: 理学显著缓解; 12-6 IF: immunofluoresce	免疫组化; HI DGS: 12趋化团 mce; IHC: imm	3: 苏木精一伊红染 引子基因特征; HR: , nunohistochemistry;	色法; OS: 总生存期 风险比; SHR: 部分) ; HE: hematoxylin-e	; RFS: 无复发生 风险比; TLS: 三结 osin staining; OS:	存期; DFS: 无病生 政淋巴样结构; NA overall survival; F	E存期; DSS: : 未知。 VFS: recurrenc	疾病特异性生存期; :e-free survival; DFS	DCR: 疾病控制率; pCR: 病理: : disease-free survival; DSS: dis	完全缓解; PR: 部分缓 ease-specific survival;	é解; MPR: 病 DCR: disease
control rate; pCR: p phoid structure; NA:	athologic com; not available.	plete response; PR:	partial response; MF	PR: major patholc	gic response; 12-C	GS: 12-chem	okine gene signature	; HR: hazard rate; SHR: substitu	ution hazard rate; TLS:	tertiary lym-

4 TLS在肿瘤中的功能

TLS与肿瘤预后密切相关,其在肿瘤微环境中 发挥的功能逐渐被揭示。

4.1 TLS与体液免疫

从具有高密度TLS的肿瘤标本中分离的B细胞 于体外培养,在上清中可以检测更多的肿瘤抗原特 异性的IgG、IgA抗体,提示TLS中效应B细胞具备 抗肿瘤作用^[22]。在卵巢癌转移灶中的TLS-B细胞具 有记忆表型,产生抗体包括IgG1和IgG3^[63]。此外,肝 细胞癌中,位于肿瘤边缘与T细胞共定位(类似TLS 结构)的IgD⁻IgG⁺CD27⁻CD38⁻CD20⁺ B细胞,能够通 过分泌颗粒酶B和TRAIL直接杀伤肿瘤细胞^[64]。

4.2 TLS与细胞免疫

HEV招募幼稚T淋巴细胞至瘤内,在肺癌中,幼 稚T细胞与肿瘤的其他部位相比也在TLS中富集,说 明外周进入的幼稚T细胞可能优先定位在TLS^[62,65]。 与TLS^{low}肿瘤相比较,TLS^{hi}肿瘤亦有更多的效应记 忆CD8⁺T细胞浸润,伴随T细胞激活、Th1极化和T 细胞毒性作用的相关基因的过表达^[5,30,62],说明TLS 是效应T细胞浸润和活化的重要部位。TLS中CTL的 活化受到了B细胞的推动,研究发现TLS中B细胞与 CTL表达穿孔素和颗粒酶B的水平呈正相关^[21,24-25,66]。 在一个脾切除的LTα⁺⁺黑色素瘤小鼠模型中,SLO完 全缺乏可诱导TLS生成,同时在瘤内发生T细胞的招 募和特异性T细胞反应^[67],提示TLS可以独立于SLO 发生细胞免疫作用。

4.3 TLS与治疗诱导免疫

TLS与化疗和免疫治疗的疗效密切相关。对 接受新辅助化疗前后的肿瘤组织进行对比,我们 发现接受新辅助化疗的乳腺癌中存在更多的TLS, 尤其是在对治疗有反应的肿瘤中,定位于TLS中的 ICOSL⁺ B细胞能够激活T细胞,产生抗肿瘤效应^[23]。 在临床研究中,接受新辅助化疗联合免疫治疗的非 小细胞癌患者中,肿瘤局部TLS和淋巴细胞数目与 患者病理完全缓解率呈正相关^[68]。

免疫治疗方面,在黑色素瘤^[24,50]和软组织肉瘤^[51] 中,TLS-B细胞与患者对anti-PD1治疗的反应性及预后 密切相关。非小细胞肺癌中,ICB治疗患者的不良预 后与TLS中失调的Tfh-B-组织驻留记忆T细胞(tissueresident memory CD8⁺T cell, Trm)相互作用有关^[69]。

4.4 TLS的促瘤作用

据报道,TLS在少数肿瘤中具有促进肿瘤发生

发展的作用。在肝细胞癌发生初期, 肝脏TLS中能 够观察到增殖分化的肝癌祖细胞, 提示TLS可能为 癌细胞提供了适宜的生长环境^[52]。在前列腺癌中, TLS内含有免疫抑制表型的PC, 其通过分泌淋巴毒 素(lymphotoxin, LT)激活前列腺癌干细胞, 从而促进 肿瘤发展^[70]。在HER2⁻乳腺癌^[53]和膀胱癌^[71]中观察 到肿瘤细胞浸润至部分TLS中, 而这一现象与淋巴 结转移相关, 说明这些TLS可能为肿瘤的淋巴结转 移提供了有利条件。

5 TLS的形成机制

并非在所有的肿瘤中都能观察到TLS,这意味着肿瘤微环境需要具备一定的条件才能驱动TLS的形成,然而,目前大部分对于TLS形成的研究在自身免疫病模型或者慢性炎症疾病虽已被开展,但在肿瘤中TLS的形成机制尚不清楚。

鉴于TLS与SLO结构相似,有学者认为它们可 能具有类似的形成过程。在SLO形成过程中,淋巴 组织诱导细胞(lymphoid tissue inducer cell, LTi)和淋 巴组织组织细胞(lymphoid tissue organizer cell, LTo) 的相互作用是形成过程中的关键事件,二者通过 LTα1β2-LTβR或TNF-TNFR1信号通路促进趋化因子 (CCL19、CCL21、CXCL12、CXCL13)和黏附因子 (VCAM1、ICAM1、MADCAM1)、血管内皮生长 因子(VEGF-C)的释放,招募淋巴细胞和刺激HEVs 的生成^[72],趋化因子(CXCL13和CCL21)再进一步控 制B细胞、T细胞的分离和区域化^[73]。

在肿瘤TLS中,多种免疫细胞和基质细胞被 发现具有LTi或LTo细胞的表型特征,这些细胞通过 LTα1β2-LTβR或TNF-TNFR1信号通路诱导TLS形 成。在小鼠黑色素瘤模型中,肿瘤相关成纤维细胞 (cancer-associated fibroblast, CAF)具备LTo细胞特征, 表达LTβR和TNFR1,肿瘤内CD8 T细胞和LTα1β2⁺ B 细胞则协同作为LTi细胞, CD8⁺ T细胞促进淋巴细胞 的初始聚集和网状结构的形成, B细胞被CAF表达的 CXCL13招募,随后通过LTβR信号通路驱动CAF增 殖和TLS扩增^[74]。在非小细胞肺癌中,固有淋巴样 细胞(innate lymphoid cell, ILC) NCR⁺ ILC3具有LTi细 胞特征,表达LTα、TNFα,定位于TLS边缘且可以分 泌细胞因子^[75]。结直肠癌中的NKp44⁺ ILC3高表达 LTA、LTB,通过LTα1β2与基质细胞作用诱导TLS形 成^[38]。在自身免疫病或者感染性疾病中,成纤维细 胞^[76-77]、B细胞^[78]、Th 17细胞^[79-80]、和M1巨噬细胞^[81] 起到类似LTi细胞的作用,从而诱导TLS的发生。

淋巴细胞趋化因子与TLS的形成密切相关。在 TLS^{hi}和TLS^{low}肿瘤中进行对比,TLS^{hi}肿瘤中有趋化 因子呈高表达水平,基于此,研究人员开发出的12 趋化因子(包含了CCL19、CCL21、CXCL13等趋 化因子)表达水平特征也用于预测肿瘤中TLS的存 在,且己在多种肿瘤中得到证实^[40,82-83]。趋化因子 可由不同的基质细胞或免疫细胞分泌,如乳腺癌中 的CAF可分泌CXCL12、CXCL13^[84],卵巢癌中的 CD8⁺T细胞可在TGFβ存在的情况下分泌CXCL13, 并募集B细胞^[85],而CCL19和CXCL12则与DC、B细 胞和PC的定位相关^[86]。

由此可见, TLS和SLO的形成过程可能有共同 的下游信号分子, 而引发TLS出现的最初信号则与 传统的淋巴器官形成过程有很大差异, 还有待进一 步的研究。

6 靶向TLS治疗的新策略

鉴于TLS明确的抗肿瘤作用, 靶向TLS在肿瘤 治疗中具有重要潜力, 如何诱导抗肿瘤TLS的形成 也成为研究热点之一。有研究表明通过向小鼠直接 输入LTo细胞可以促进TLS形成^[87], 例如, 在C57BL/6 小鼠中皮下注射淋巴结来源的成纤维基质细胞可以 诱导TLS在原位形成, 而后注入MC38肿瘤溶解液处 理过的DC后, 科研人员能观察到TLS中有IFNγ和细 胞毒性效应分子的分泌; 而在TLS旁注射MC38肿瘤 细胞, 成瘤明显受到抑制^[87]。

B细胞是TLS的重要组成部分,在胶质瘤小鼠模型中开展的两项研究中,一项通过瘤内注射腺病毒表达的CD40L(CD40L表达于活化T细胞,与CD40结合是B细胞活化的重要第二刺激信号)可以诱导TLS形成,科研人员可观察到肿瘤的缩小甚至消失^[88];另一项通过静脉注射激动性CD40抗体(αCD40),科研人员在肿瘤组织附近的脑膜中可观察到TLS形成,且TLS的形成依赖于B细胞,同时治疗组的B细胞中的LTα表达水平升高,提示αCD40可能刺激B细胞通过LTα信号促进TLS形成^[89]。

趋化因子也被应用于TLS和抗肿瘤免疫的诱导。在胰腺导管腺癌(pancreatic ductal adenocarcinoma, PDAC)小鼠瘤内注射CXCL13、CCL21后,能够观察到TLS的形成,该治疗与吉西他滨联合应用

相比单药有更显著的肿瘤抑制效应^[90]。在小鼠实 验中,含有LTα1β2、CCL19、CCL21、CXCL12、 CXCL13、RANKL缓释凝胶的海绵胶原支架可以募 集淋巴细胞,形成人工TLS,其中富集的B、T细胞主 要为记忆表型^[91]。

肿瘤疫苗也被报道能够诱导TLS形成。高级别 宫颈上皮内瘤变(CIN2/3)患者注射HPV疫苗后,原 病变的附近可以形成TLS,而未注射疫苗的患者仅 有弥漫性散在淋巴细胞浸润^[92]。装有免疫调节因子 的多孔3D打印支架和卵清蛋白(ovalbumin, OVA)能 够在小鼠体内诱导人工TLS的形成,抑制肿瘤生长, 并且可以与anti-PD1治疗协同作用,显著延长小鼠生 存时间^[93]。

诱导TLS形成与免疫治疗结合使用时,或许可 以提高肿瘤对治疗的敏感性。近期围绕PDAC开展 的几项研究表明,在非免疫原性肿瘤中诱导TLS形 成可能可以转换肿瘤的免疫表型,将"非免疫原性" 肿瘤变为"免疫原性"肿瘤,增强免疫治疗应答反应。 PDAC通常被认为是"非免疫原性"肿瘤,缺乏肿瘤浸润 效应淋巴细胞[94],并且对免疫治疗的反应较差[95]。但 在小鼠模型中,静脉注射LIGHT-VTP(一种血管靶 向肽)可以诱导TLS形成, LIGHT作为TNF超家族的 成员之一,其配体为LIGHTR和LTβR,与anti-PD1、 anti-CTLA4三联治疗能延长平均生存时间^[96];由抗 纤维化的α-mangostin和编码LIGHT的质粒组成的 Nano-sapper能增加瘤内淋巴细胞浸润,诱导TLS形成, 与对照组、化疗组(吉西他滨)、单独anti-PD1组相比 较, Nano-sapper和anti-PD1联合治疗在小鼠中可以获 得最大程度的肿瘤坏死以及最长的生存时间[97]。在 PDAC患者皮内注射肿瘤疫苗GVAX,并联合环磷酰 胺治疗,可以在瘤内形成TLS,与更长的OS相关,而 在未接受疫苗治疗的患者中,人们仅能观察到瘤内 少量的淋巴细胞浸润^[98]。尽管诱导或增强TLS功能 可能改善抗肿瘤免疫,但鉴于TLS在自身免疫疾病 中作用,这种干预可能同时促进自身反应性T和B细 胞反应,可能产生的副作用同样值得重视。

7 展望

TLS在抗肿瘤免疫中承担重要角色, 靶向TLS是 潜在的肿瘤治疗方案。目前, 肿瘤TLS形成和作用机 制仍不明确, 相关研究不仅有助于我们深入认识肿瘤 微环境, 更对开发新的肿瘤治疗药物有重大意义。

参考文献 (References)

- LEVINE G D, ROSAI J. Thymic hyperplasia and neoplasia: a review of current concepts [J]. Human Pathol, 1978, 9(5): 495-515.
- [2] ALOISI F, PUJOL BORRELL R. Lymphoid neogenesis in chronic inflammatory diseases [J]. Nat Rev Immunol, 2006, 6(3): 205-17.
- [3] PRINEAS J W. Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord [J]. Science, 1979, 203(4385): 1123-5.
- [4] DIEU NOSJEAN M C, ANTOINE M, DANEL C, et al. Longterm survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures[J]. J Clin Oncol, 2008, 26(27): 4410-17.
- [5] LADÁNYI A, KISS J, SOMLAI B, et al. Density of DC-LAMP⁺ mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor [J]. Cancer Immunol Immunother, 2007, 56(9): 1459-69.
- [6] DIEU NOSJEAN M C, GIRALDO N A, KAPLON H, et al. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers [J]. Immunol Rev, 2016, 271(1): 260-75.
- [7] MARTINET L, GARRIDO I, FILLERON T, et al. Human solid tumors contain high endothelial venules: association with t- and b-lymphocyte infiltration and favorable prognosis in breast cancer [J]. Cancer Res, 2011, 71(17): 5678-87.
- [8] SAUTÈS FRIDMAN C, PETITPREZ F, CALDERARO J, et al. Tertiary lymphoid structures in the era of cancer immunotherapy [J]. Nat Rev Cancer, 2019, 19(6): 307-25.
- [9] REISER J, BANERJEE A. Effector, memory, and dysfunctional CD8⁺ T cell fates in the antitumor immune response [J]. J Immunol Res, 2016, 2016: e8941260.
- [10] THOMMEN D S, KOELZER V H, HERZIG P, et al. A transcriptionally and functionally distinct PD-1⁺ CD8⁺ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade [J]. Nat Med, 2018, 24(7): 994-1004.
- [11] VAN DER LEUN A M, THOMMEN D S, SCHUMACHER T N. CD8⁺ T cell states in human cancer: insights from single-cell analysis [J]. Nat Rev Cancer, 2020, 20(4): 218-32.
- [12] BORST J, AHRENDS T, BĄBAŁA N, et al. CD4⁺ T cell help in cancer immunology and immunotherapy [J]. Nat Rev Immunol, 2018, 18(10): 635-47.
- [13] GU TRANTIEN C, LOI S, GARAUD S, et al. CD4⁺ follicular helper T cell infiltration predicts breast cancer survival [J]. J Clin Invest, 2013, 123(7): 2873-92.
- [14] RUFFIN A T, CILLO A R, TABIB T, et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma [J]. Nat Commun, 2021, 12(1): 3349.
- [15] GU TRANTIEN C, MIGLIORI E, BUISSERET L, et al. CX-CL13-producing T_{FH} cells link immune suppression and adaptive memory in human breast cancer [J]. JCI Insight, 2017, 2(11): e91487.
- [16] GOBERT M, TREILLEUX I, BENDRISS VERMARE N, et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome [J]. Cancer Res, 2009, 69(5): 2000-9.

- [17] DE LA GARCÍA HERNÁNDEZ M, URIBE-URIBE N O, ESPI-NOSA GONZÁLEZ R, et al. A unique cellular and molecular microenvironment is present in tertiary lymphoid organs of patients with spontaneous prostate cancer regression [J]. Front Immunol, 2017, 8: 563.
- [18] JOSHI N S, AKAMA GARREN E H, LU Y, et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses [J]. Immunity, 2015, 43(3): 579-90.
- [19] COLBECK E J, JONES E, HINDLEY J P, et al. Treg depletion licenses T cell-driven hev neogenesis and promotes tumor destruction [J]. Cancer Immunol Res, 2017, 5(11): 1005-15.
- [20] CIPPONI A, MERCIER M, SEREMET T, et al. Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases [J]. Cancer Res, 2012, 72(16): 3997-4007.
- [21] NIELSEN J S, SAHOTA R A, MILNE K, et al. CD20⁺ tumorinfiltrating lymphocytes have an atypical CD27⁻ memory phenotype and together with CD8⁺ T cells promote favorable prognosis in ovarian cancer [J]. Clin Cancer Res, 2012, 18(12): 3281-92.
- [22] GERMAIN C, GNJATIC S, TAMZALIT F, et al. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer [J]. Am J Respir Crit Care Med, 2014, 189(7): 832-44.
- [23] LU Y, ZHAO Q, LIAO J Y, et al. Complement signals determine opposite effects of B cells in chemotherapy-induced immunity [J]. Cell, 2020, 180(6): 1081-97,e24.
- [24] CABRITA R, LAUSS M, SANNA A, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma [J]. Nature, 2020, 577(7791): 561-5.
- [25] WENNHOLD K, THELEN M, LEHMANN J, et al. CD86⁺ antigen-presenting B cells are increased in cancer, localize in tertiary lymphoid structures, and induce specific T-cell responses [J]. Cancer Immunol Res, 2021, 9(9): 1098-108.
- [26] SCHLÖSSER H A, THELEN M, LECHNER A, et al. B cells in esophago-gastric adenocarcinoma are highly differentiated, organize in tertiary lymphoid structures and produce tumor-specific antibodies [J]. OncoImmunology, 2019, 8(1): e1512458.
- [27] SHARONOV G V, SEREBROVSKAYA E O, YUZHAKOVA D V, et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment [J]. Nat Rev Immunol, 2020, 20(5): 294-307.
- [28] SEOW D Y B, YEONG J P S, LIM J X, et al. Tertiary lymphoid structures and associated plasma cells play an important role in the biology of triple-negative breast cancers [J]. Breast Cancer Res Treat, 2020, 180(2): 369-77.
- [29] KROEGER D R, MILNE K, NELSON B H. Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer [J]. Clin Cancer Res, 2016, 22(12): 3005-15.
- [30] GIRALDO N A, BECHT E, PAGÈS F, et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer [J]. Clin Cancer Res, 2015, 21(13): 3031-40.
- [31] GIRALDO N A, BECHT E, VANO Y, et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma [J]. Clin Cancer Res, 2017, 23(15): 4416-28.
- [32] POSCH F, SILINA K, LEIBL S, et al. Maturation of tertiary

lymphoid structures and recurrence of stage II and III colorectal cancer [J]. OncoImmunololy, 2018, 7(2): e1378844.

- [33] CUPEDO T, JANSEN W, KRAAL G, et al. Induction of secondary and tertiary lymphoid structures in the skin [J]. Immunity, 2004, 21(5): 655-67.
- [34] GIRARD J P, MOUSSION C, FÖRSTER R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes [J]. Nat Rev Immunol, 2012, 12(11): 762-73.
- [35] SONG I H, HEO S H, BANG W S, et al. Predictive value of tertiary lymphoid structures assessed by high endothelial venule counts in the neoadjuvant setting of triple-negative breast cancer [J]. Cancer Res Treat, 2016, 49(2): 399-407.
- [36] MARTINET L, LE GUELLEC S, FILLERON T, et al. High endothelial venules (HEVs) in human melanoma lesions [J]. Onco-Immunology, 2012, 1(6): 829-39.
- [37] FEDERICO L, MCGRAIL D J, BENTEBIBEL S E, et al. Distinct tumor-infiltrating lymphocyte landscapes are associated with clinical outcomes in localized non-small-cell lung cancer [J]. Ann Oncol, 2022, 33(1): 42-56.
- [38] IKEDA A, OGINO T, KAYAMA H, et al. Human NKp44⁺ group 3 innate lymphoid cells associate with tumor-associated tertiary lymphoid structures in colorectal cancer [J]. Cancer Immunol Res, 2020, 8(6): 724-31.
- [39] CARO G D, BERGOMAS F, GRIZZI F, et al. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers [J]. Clin Cancer Res, 2014, 20(8): 2147-58.
- [40] MESSINA J L, FENSTERMACHER D A, ESCHRICH S, et al. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy [J]? Sci Rep, 2012, 2(1): 765.
- [41] LYNCH K T, YOUNG S J, MENEVEAU M O, et al. Heterogeneity in tertiary lymphoid structure B-cells correlates with patient survival in metastatic melanoma [J]. J Immunother Cancer, 2021, 9(6): e002273.
- [42] PFANNSTIEL C, STRISSEL P L, CHIAPPINELLI K B, et al. The tumor immune microenvironment drives a prognostic relevance that correlates with bladder cancer subtypes [J]. Cancer Immunol Res, 2019, 7(6): 923-38.
- [43] OLKHOV MITSEL E, HODGSON A, LIU S K, et al. Upregulation of IFNy-mediated chemokines dominate the immune transcriptome of muscle-invasive urothelial carcinoma [J]. Sci Rep, 2022, 12(1): 716.
- [44] MUNOZ ERAZO L, RHODES J L, MARION V C, et al. Tertiary lymphoid structures in cancer: considerations for patient prognosis [J]. Cell Mol Immunol, 2020, 17(6): 570-75.
- [45] SILIŅA K, SOLTERMANN A, ATTAR F M, et al. Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma [J]. Cancer Res, 2018, 78(5): 1308-20.
- [46] MORI T, TANAKA H, DEGUCHI S, et al. Clinical efficacy of nivolumab is associated with tertiary lymphoid structures in surgically resected primary tumors of recurrent gastric cancer [J]. PLoS One, 2022, 17(1): e0262455.
- [47] COTTRELL T R, THOMPSON E D, FORDE P M, et al. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative

immune-related pathologic response criteria (irPRC) [J]. Ann Oncol, 2018, 29(8): 1853-60.

- [48] GROENEVELD C S, FONTUGNE J, CABEL L, et al. Tertiary lymphoid structures marker CXCL13 is associated with better survival for patients with advanced-stage bladder cancer treated with immunotherapy [J]. Eur J Cancer, 2021, 148: 181-9.
- [49] VAN DIJK N, GIL JIMENEZ A, SILINA K, et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial [J]. Nat Med, 2020, 26(12): 1839-44.
- [50] HELMINK B A, REDDY S M, GAO J, et al. B cells and tertiary lymphoid structures promote immunotherapy response [J]. Nature, 2020, 577(7791): 549-55.
- [51] PETITPREZ F, DE REYNIÈS A, KEUNG E Z, et al. B cells are associated with survival and immunotherapy response in sarcoma [J]. Nature, 2020, 577(7791): 556-60.
- [52] FINKIN S, YUAN D, STEIN I, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma [J]. Nat Immunol, 2015, 16(12): 1235-44.
- [53] LIU X, TSANG J Y S, HLAING T, et al. Distinct tertiary lymphoid structure associations and their prognostic relevance in HER2 positive and negative breast cancers [J]. Oncologist, 2017, 22(11): 1316-24.
- [54] XU W, MA C, LIU W, et al. Prognostic value, DNA variation and immunologic features of a tertiary lymphoid structure-related chemokine signature in clear cell renal cell carcinoma [J]. Cancer Immunol Immunother, 2022, doi: 10.1007/s00262-021-03123-y.
- [55] SOBOTTKA B, NIENHOLD R, NOWAK M, et al. Integrated analysis of immunotherapy treated clear cell renal cell carcinomas: an exploratory study [J]. J Immunother, 2022, 45(1): 35-42.
- [56] CALDERARO J, PETITPREZ F, BECHT E, et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma [J]. J Hepatol, 2019, 70(1): 58-65.
- [57] MEYLAN M, PETITPREZ F, LACROIX L, et al. Early hepatic lesions display immature tertiary lymphoid structures and show elevated expression of immune inhibitory and immunosuppressive molecules [J]. Clin Cancer Res, 2020, 26(16): 4381-9.
- [58] SHIELDS J D, KOURTIS I C, TOMEI A A, et al. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21 [J]. Science, 2010, 328(5979): 749-52.
- [59] SOFOPOULOS M, FORTIS S P, VAXEVANIS C K, et al. The prognostic significance of peritumoral tertiary lymphoid structures in breast cancer [J]. Cancer Immunol Immunother, 2019, 68(11): 1733-45.
- [60] DING G Y, MA J Q, YUN J P, et al. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma [J]. J Hepatol, 2021, 76(3): 608-18.
- [61] REMARK R, ALIFANO M, CREMER I, et al. Characteristics and clinical impacts of the immune environments in colorectal and renal cell carcinoma lung metastases: influence of tumor origin [J]. Clin Cancer Res, 2013, 19(15): 4079-91.
- [62] GOC J, GERMAIN C, VO BOURGAIS T K D, et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8⁺ T cells [J]. Cancer Res, 2014, 74(3): 705-15.

- [63] MONTFORT A, PEARCE O, MANIATI E, et al. A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases [J]. Clin Cancer Res, 2017, 23(1): 250-62.
- [64] SHI J Y, GAO Q, WANG Z C, et al. Margin-infiltrating CD20⁺ B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma [J]. Clin Cancer Res, 2013, 19(21): 5994-6005.
- [65] DE CHAISEMARTIN L, GOC J, DAMOTTE D, et al. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer [J]. Cancer Res, 2011, 71(20): 6391-99.
- [66] YAMAKOSHI Y, TANAKA H, SAKIMURA C, et al. Immunological potential of tertiary lymphoid structures surrounding the primary tumor in gastric cancer [J]. Int J Oncol, 2020, 57(1): 171-82.
- [67] SCHRAMA D, VOIGT H, EGGERT A O, et al. Immunological tumor destruction in a murine melanoma model by targeted LTalpha independent of secondary lymphoid tissue [J]. Cancer Immunol Immunother: CII, 2008, 57(1): 85-95.
- [68] WU J, HOU L, E H R, et al. Real-world clinical outcomes of neoadjuvant immunotherapy combined with chemotherapy in resectable non-small cell lung cancer [J]. Lung Cancer, 2022, 165: 115-23.
- [69] CHO J W, PARK S, KIM G, et al. Dysregulation of TFH-B-TRM lymphocyte cooperation is associated with unfavorable anti-PD-1 responses in EGFR-mutant lung cancer [J]. Nat Commun, 2021, 12(1): 6068.
- [70] SHALAPOUR S, FONT-BURGADA J, DI CARO G, et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy [J]. Nature, 2015, 521(7550): 94-8.
- [71] KOTI M, XU A S, REN K Y M, et al. Tertiary lymphoid structures associate with tumour stage in urothelial bladder cancer [J]. Bladder Cancer, 2017, 3(4): 259-67.
- [72] VONDENHOFF M F, GREUTER M, GOVERSE G, et al. LTβR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen [J]. J Immunol, 2009, 182(9): 5439-45.
- [73] LUTHER S A, LOPEZ T, BAI W, et al. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis [J]. Immunity, 2000, 12(5): 471-81.
- [74] RODRIGUEZ A B, PESKE J D, WOODS A N, et al. Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts [J]. Cell Rep, 2021, 36(3): 109422.
- [75] CARREGA P, LOIACONO F, DI CARLO E, et al. NCR⁺ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures [J]. Nat Commun, 2015, 6(1): 8280.
- [76] ASAM S, NAYAR S, GARDNER D, et al. Stromal cells in tertiary lymphoid structures: architects of autoimmunity [J]. Immunol Rev, 2021, 302(1): 184-95.
- [77] NAYAR S, CAMPOS J, SMITH C G, et al. Immunofibroblasts are pivotal drivers of tertiary lymphoid structure formation and local pathology [J]. Proc Nat Acad Sci USA, 2019, 116(27): 13490-7.
- [78] LOCHNER M, OHNMACHT C, PRESLEY L, et al. Microbiotainduced tertiary lymphoid tissues aggravate inflammatory disease

in the absence of ROR γ t and LTi cells [J]. J Exp Med, 2011, 208(1): 125-34.

- [79] GROGAN J L, OUYANG W. A role for Th17 cells in the regulation of tertiary lymphoid follicles [J]. Eur J Immunol, 201211, 42(9): 2255-62.
- [80] PETERS A, PITCHER L A, SULLIVAN J M, et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation [J]. Immunity, 2011, 35(6): 986-96.
- [81] GUEDJ K, KHALLOU LASCHET J, CLEMENT M, et al. M1 macrophages act as LTβR-independent lymphoid tissue inducer cells during atherosclerosis-related lymphoid neogenesis [J]. Cardiovascular Res, 2014, 101(3): 434-43.
- [82] PRABHAKARAN S, RIZK V T, MA Z, et al. Evaluation of invasive breast cancer samples using a 12-chemokine gene expression score: correlation with clinical outcomes [J]. Breast Cancer Res, 2017, 19(1): 71.
- [83] TOKUNAGA R, NAKAGAWA S, SAKAMOTO Y, et al. 12-Chemokine signature, a predictor of tumor recurrence in colorectal cancer [J]. Int J Cancer, 2020, 147(2): 532-41.
- [84] SUNNY Z WU, BANIEL L RODEN, CHENFEI WANG, et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer [J]. EMBO J, 2020, 39(19): e104063.
- [85] WORKEL H H, LUBBERS J M, ARNOLD R, et al. A transcriptionally distinct CXCL13⁺CD103⁺CD8⁺ T-cell population is associated with B-cell recruitment and neoantigen load in human cancer [J]. Cancer Immunol Res, 2019, 7(5): 784-96.
- [86] LUTHER S A, BIDGOL A, HARGREAVES D C, et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis [J]. J Immunol, 2002, 169(1): 424-33.
- [87] ZHU G, NEMOTO S, MAILLOUX A W, et al. Induction of tertiary lymphoid structures with antitumor function by a lymph node-derived stromal cell line [J]. Front Immunol, 2018, 9: 1609.
- [88] WONGTHIDA P, SCHUELKE M R, DRISCOLL C B, et al. Ad-CD40L mobilizes CD4 T cells for the treatment of brainstem tumors [J]. Neuro Oncol, 2020, 22(12): 1757-70.
- [89] VAN HOOREN L, VACCARO A, RAMACHANDRAN M, et al. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma [J]. Nat Commun, 2021, 12(1): 4127.
- [90] DELVECCHIO F R, FINCHAM R E A, SPEAR S, et al. Pancreatic cancer chemotherapy is potentiated by induction of tertiary lymphoid structures in mice [J]. Cell Mol Gastroenterol Hepatol, 2021, 12(5): 1543-65.
- [91] KOBAYASHI Y, WATANABE T. Gel-trapped lymphorganogenic chemokines trigger artificial tertiary lymphoid organs and mount adaptive immune responses *in vivo* [J]. Front Immunol, 2016, 7: 316.
- [92] MALDONADO L, TEAGUE J E, MORROW M P, et al. Intramuscular therapeutic vaccination targeting HPV16 induces t cell responses that localize in mucosal lesions [J]. Sci Transl Med, 2014, 6(221): 221ra13.
- [93] ZHANG Y, XU J, FEI Z, et al. 3D printing scaffold vaccine for antitumor immunity [J]. Adv Mater, 2021, 33(48): 2106768.
- [94] VON BERNSTORFF W, VOSS M, FREICHEL S, et al. Systemic and local immunosuppression in pancreatic cancer patients

[J]. Clin Cancer Res, 2001, 7(3 Suppl): 925s-32s.

- [95] KOIDO S, HOMMA S, TAKAHARA A, et al. Current immunotherapeutic approaches in pancreatic cancer [J]. Clin Dev Immunol, 2011, 2011: e267539.
- [96] JOHANSSON PERCIVAL A, HE B, LI Z J, et al. *De novo* induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors [J]. Nat Immunol, 2017, 18(11): 1207-17.
- [97] HUANG Y, CHEN Y, ZHOU S, et al. Dual-mechanism based CTLs infiltration enhancement initiated by Nano-sapper potentiates immunotherapy against immune-excluded tumors [J]. Nat Commun, 2020, 11(1): 622.
- [98] LUTZ E R, WU A A, BIGELOW E, et al. Immunotherapy converts non-immunogenic pancreatic tumors into immunogenic foci of immune regulation [J]. Cancer Immunol Res, 2014, 2(7): 616-31.