

甲胎蛋白(AFP)对正常人淋巴 细胞的作用*

洪锦心驪胡江琴 张前进 田培坤 余新生

(上海市肿瘤研究所免疫学、细胞生物学研究室)

在胚胎期和某些疾病情况下大量合成AFP 究竟起什么生理功能,这是近年来AFP研究中 比较引人注目的一个方向 [1-6],也是 AFP 研究中尚待介决的一个问题。我们试图以体外 细胞免疫方法探讨 AFP 对正常人淋巴细胞 的 作用。

材料方法

- 1. 血清处理: 无菌 收集混合脐带 血清 (含AFP50微克/毫升),一份过滤灭菌 保存 待用,另一份通过接有 AFP 抗体的亲 和 层析 以去尽所含AFP,流出液经检测AFP含量小于 20毫微克/毫升,然后过滤灭菌待用。同法分别 收集的正常人混合血清及含 AFP 的肝癌 病 人混合血清。以上血清均经蛋白定量,使用时调至总蛋白量相等。
- 2. 纯化 AFP 制备: 胎儿匀浆生理盐水浸出液,用硫酸胺沉淀法及亲和层析法制备,制品中 AFP 含量在98%以上。无菌过滤后 冰 冻干燥待用。
- 3. 淋巴细胞转化试验: 采用观察淋巴细胞分裂相的方法 ⁸⁷⁰。本实验中用肝素抗凝的正常人全血0.2毫升,先加入脐带血清0.5毫升,37℃温育 1 小时 (AFP 浓度为 27微克/毫升)再加入0.1毫升 PHA 和 RPMI1640 培液使最后体积为 2毫升 (AFP 最后浓度为 9.4 微克/毫升) 37℃培养进行淋转试验,每次 2—3 复份。共测11例正常人。
- 4. 淋巴细胞分离: 肝素 抗凝正常人 全血用比重 1.077 的 Ficoll 泛影葡胺梯度离心, 8008, 离心15分钟, 分离 的细胞用 Hank's液

洗三次, 计数, 调至所需浓度待用。

- 5. ERFC(E玫瑰花)试验: 0.2毫升试验血清与50万淋巴细胞混合,37℃温育30分钟(如用提纯的AFP,则加入AFP溶液40毫升)后,用Hank's液洗二次,加入洗过3次的绵羊红血球(SRBC)悬液0.1毫升,淋巴细胞与SRBC比例为1:50,混合后37℃温育15分钟,500转/分,离心5分钟后于4℃放置2小时,制片观察,有4个或4个以上SRBC粘附的为ERFC阳性细胞,计数整个淋巴细胞群体中ERFC的百分比。每次两个复份。共测定16例经脐带血清处理的正常人淋巴细胞的ERFC,8例经肝癌血清处理的及6例由纯化AFP处理的淋巴细胞。
- 6. ARFC(Active 玫瑰花)试验: 用 稍加改良的 Smith 方法进行¹⁸³,淋巴细胞 处 理同 ERFC 试验,但离心后不放置在 4℃而 是立即固定涂片。温度对 ARFC 有较大影响, 以保持在20℃左右为宜。共测试 8 例经肝癌血 清和脐带血清处理的, 6 例经纯化A FP 处理 的淋巴细胞。
- 7. PHA 激活过的淋巴细胞的玫瑰花试验(巨大 ERFC,巨大 ARFC)。试验方法另有详述^[9],本实验中用经 PHA 活化72小时的淋巴细胞(约有50%是被活化的淋巴母细胞)经 AFP 处理后进行 ERFC 和 ARFC 试验,方法同前面介绍的 ERFC 和ARFC 方法。两项试验各测定 6 例正常人。

^{*}本实验工作承本所许凯黎、关赛芳同志协助进行AFP纯化 工作及检测工作,特此致谢

8. 後量淋巴细胞细胞毒性 试验: 用中科院细胞生物学研究所提供的肝癌细胞株7402作靶细胞,观察AFP 对淋巴细胞的天然 细胞毒性和 PHA 诱导的细胞毒性的影响。操作方法另有报道^[7],本实验中在实验组中加入 提纯的AFP至最终浓度为155微克/毫升,两项试验各测试 6 例正常人。

实验结果

1.含AFP的血清对ERFC和ARFC的影响:含AFP的脐带血清和肝癌病人血清,一般都不显示对ERFC和ARFC影响,但在ERFC试验中16例中有3例其ERFC被脐带血清所降低〔注:在本文实验中ERFC和ARFC实验组与对照组比较时,均以超过5%的变化作上升或下降,以摒除实验观察涂片时的计数误差〕但AFP去尽后的脐带血清对此三例淋巴细胞ERFC产生相同的降低作用。

(实验结果见表1,图1,图2)

表1. 脐带血清对3例供主ERFC的抑制

EKFC 试 % 样 供主	正常人混合血清	含 AFP 脐 带血清(AF P 含量50微 克/毫升)	不含AFP 脐带血清
张 × ×	51	35	32
类 × ×	74	59.5	60
顾 × ×	57	47	42

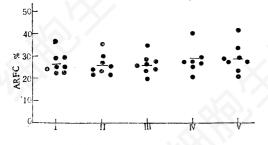


图 1: 含AFP血清对ARFC的影响

I. 正常人血清,平均值=26.04; I、脐带血清,平均值=25.83; I、不含AFP脐带血清,平均值=25.82; I、含AFP肝癌血清,平均值=29.33; V、不含AFP肝癌血清,平均值=28.75,

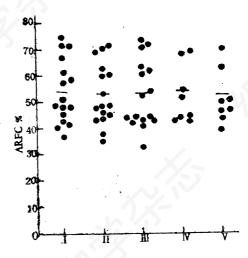


图 2: 含AFP血清对ERFC的影响

I、正常人血清,平均值=53.75; I、脐带血清,平均值=52.38; I、不含AFP脐带血清,平均值=53.07; I、含AFP肝癌血清,平均值=53.65; V、不含AFP肝癌血清,平均值=52.5,

2. 脐带血清对淋巴细胞转化的影响: 与正常人血清相比,脐带血清显著抑制PHA刺激的淋巴细胞转化,然而AFP去尽的脐带血清产生同样显著的抑制作用。(见表 2)

表2. 脐带血清对PHA刺激的淋巴细胞转化的影响

试 样	正常人血清 (A)	脐带血清*	不含AFP脐 带血清 (C)
淋巴细胞转化 (11例分裂相平 均%)	43.07±9.77	32.66±8.98	32.1±8.4

* AFP最终浓度为9.4微克/毫升

统计处理: (A)组与(C)组相比

P < 0.001

(B)组与(C)组相比

P>0.5

(student-t 试验计算)

3. 纯化的AFP对ERFC及ARFC的影响: 各种浓度AFP对ERFC无影响(见表3),而 对ARFC及巨大ARFC均有影响,但AFP对不 同供主的淋巴细胞起的作用不同,且对不同供

表3 纯化AFP对ERFC影响*

AFP浓度 µg/ml	0	10	50	200	400	800
ERFC % 6 例平均值			48.25 ±7.73			49.67± 6.93

^{*} 因 AFP 对各供主 ERFC 无显著影响故不一一列出数值, 仅列平均值。

主淋巴细胞的阈值也不同。6例供主中3例 AREC升高,1例下降,2例无变化(见图3)。

图3 AFP对ARFC的影响,自上而下为

- 1. 供主: 洪×× 2. 供主: 方×× 3. 供主: 蒋××
- 4. 供主: 陈×× 5. 供主: 张×× 6. 供主: 诸××

E大 AFP浓度 ARFC µg/ml % 供主	0	10	50	200	400	800
请××	20	22	23	22	17.5	18
胡××	9.5	10	11.5	12	11	19
H × ×	18.5	17.5	/	1	/	12
$\Xi \times X$	14	15	15	14	14	9
阮××	15	14	/	10	8	8.5
蒋××	19	25	22	31.5	/	28

表5 纯化AFP对巨大ERFC影响

E大 AFP浓度 ERFC µg/ml 供主	0	10	50	200	400	800
Ξ××	20.5	18.5	19	16.5	18	19.5
张 × × (A)	19	/	24	26.5	19	20.5
高××	16	19	1	24	/	25,5
张××(B)	20	20.5	26	30	31,5	/
阮××	19	16	17	19	15	16.5
蒋××	3 5.5	31.5	28	31	31.5	33.5

表6 AFP对正常人天然淋巴细胞细胞毒性的影响

剩 余 粑细胞 数 供 主	靶细胞 (A)	靶细胞+淋巴细胞 (B)	靶细胞+淋巴细胞 +AFP (C)	统计处理 <(B)组与(C)组相比>
张 × × (男)	422±60	215±20	263±26.5	P<0.025*
方××	422±60	96±16	150±33	P<0.001*
张 × × (女)	208 <u>±</u> 30	169±27	228±16	P<0.05*
阮××	213±24	152±28	145 <u>±</u> 27	P>0.5* * *
诸××	247.7±58.4	188±39.2	83.2 <u>+</u> 11.7	P<0.01 * *
±××	2 48±41.58	198±8.32	147±31.77	P<0.01 * *

- * 供主淋巴细胞攻击能力被AFP抑制。
- ** 供主淋巴细胞攻击能力被增强。
- *** AFP对供主淋巴细胞攻击力无显著影响。

还可见3例巨大AREC下降,1例巨大ARFC 上升(见表4)。而在巨大ERFC实验中除2 例明显上升外,还可见有二例在50微克/毫升 AFP浓度时分别有上升或下降(见表5,分别 是张××(A),蒋××),但在高浓度时又 回复到对照水平。

4。 纯化 AFP 对微量淋巴细胞细胞毒性的 影响: 在实验中亦观察到AFP对不同供主的 淋巴细胞产生不同作用。在淋巴细胞天然细胞毒性试验中,6例供主中有3例供主淋巴细胞毒性作用被抑制,2例被增强,1例无变化(见表6)。在 PHA 诱发的淋巴细胞毒性试验中,仅1例供主淋巴细胞毒性被增强,另一例被抑制(见表7)。实验中我们亦排除了AFP制品本身对靶细胞的毒性作用。(见表8)

表7 AFP对PHA刺激的正常人淋巴细胞细胞毒性的影响

利 余 组 利 利 数 供 主	靶细胞 (A)	靶细胞+淋巴细胞 +PHA (B)	靶细胞+淋巴细胞 +PHA+AFP (C)	统计处理 〈(B)组与(C)组相比〉
txx	112±28	50±22.9	33.17±11.31	P>0.2 * * *
吴 × ×	67±17.6	17±11.3	18士8.4	P>0.5**
洪 × ×	88±11	21±1.6	3±3.95	P>0.01* *
阮××	153±28	28±3	46±14	P<0.05*
请××	187.83±35.71	19±10.8	14±4.6	P>0.5***
Ξ××	248.3±37.96	85±14	72±13.4	P>0.5 * * *

- * 供主淋巴细胞攻击能力被抑制。
- ** 供主淋巴细胞攻击能力被增强。
- *** AFP对供主淋巴细胞攻击力无显著影响。

表8 纯化AFP对靶细胞影响

实验次数	组别	剩余靶细胞数	统计处理
-	靶细胞	340.83±45.9	P>0.5*
1	靶细胞+AFP	330.5±40.87	F >0.5*
TT	靶细胞	355±24.22	P>0.5*
II	靶细胞+AFP	368±52.36	F > 0.5 *

*表明AFP制品不显著影响靶细胞生长

讨论

我们的实验显示脐带血清和AFP去尽后的脐带血清都能抑制 PHA 引起的正常人淋巴细胞转化及某些正常人(16例中3例)的ERFC,提示脐带血清的免疫抑制作用可能不是AFP而是其他成分引起;如母体血清中粘蛋白(mucoprotein)和糖蛋白[10]及妊娠期某些激素[11]等等。令人非常感兴趣的是 Ladib 等用新生小

鼠血清和羊水进行了类似实验¹²¹,也 观察到 AFP去尽后的羊水及新生小鼠血清抑制淋巴细胞转化。

在用我们提取的AFP制品进行的实验中,较高浓度的 AFP能影响一些 供主 淋巴细胞的 ARFC,巨大ERFC和巨大 ARFC,看 来AFP 不仅对T淋巴细胞的一个亚群 ARFC 淋巴细胞与SRBC的亲和力有影响,而且对经PHA 活化的淋巴细胞与SRBC 的亲和力有影响。也注意到 AFP 对各供主淋巴细胞的作用是 因 人而异的,可以引起免疫抑制作用,也可以起增强作用。同时对供主淋巴细胞起影响的AFP浓度的阈值也各不相同。在ARFC试验中,AFP浓度为10微克/毫升时对各供主淋巴细胞都无 显著作用,在 50 微克/毫升浓度时仅有 1 例供主洪××ARFC上升。而AFP浓度为1000 微克/毫升使4个供主ARFC变化,因此AFP含量较 低的样

品如脐带血清等,对正常人淋巴细胞的 ARFC 往往不能起作用。

我们还观察到AFP能影响某些正常人淋巴细胞天然细胞毒性和PHA诱发的细胞毒性,在AFP作用下有些供主淋巴细胞攻击能力被抑制了,有些不受影响,还有一些攻击力甚至被增强了。

根据上述AFP制品的初步实验结果,我们 认为AFP不象是一种一般的免疫抑制剂,AFP 对各个供主的淋巴细胞可能起不同的作用。 关于AFP对淋巴细胞的作用,尚存在各种不同 解释, Charpentier曾报道AFP能增强混合淋巴 细胞反应[13], Yachnin[14]报导人体淋巴细 胞中可能存在对抗AFP的亚群, Alpert 等介绍 *15 AFP的免疫抑制可能是T细胞中的Ts (Suppressor Cell) 所中介, ……。我们还认为各 供主淋巴细胞的亚群组成各不相同,在AFP作 用下整个淋巴细胞群体的反应也表现不同。况 且,已发现AFP不是单一成分,用等电点聚焦 法至少可分成六种成分[16],这些亚类的生物 活性不一[14,16],可能只是其中之一种起免 疫抑制作用。此外在制备AFP过程中往往可能 把一些小分子带入, 而正是这些小分子起着免 疫抑制作用『17』。这些虽能部分解释AFP实验 中引起生物活性差异的原因, 但可能尚有未了 解的因素起着作用, Tomasi 已作过详 细的讨 论[17]。总之,了解淋巴细胞各亚群在AFP作 用下的功能表现及 AFP 本身各亚类的不 同 作 用,将有助于进一步深入了解 AFP 的 生 理功 能。

小 结

利用淋巴细胞 转 化,ERFC、ARFC、巨 大ARFC,巨大ERFC 及微量淋巴细胞细胞毒性 试验等体外细胞免疫方法研究人体脐带血清及 纯化的AFP制品对正常人淋巴细胞的作用。结 果提示脐带血清可引起的淋巴细胞转化的抑制 并不是由血清中AFP所致。而纯化的抑制品有 时能增强某些供主淋巴细胞的作用,有时则抑 制另一些供主淋巴细胞的作用,可见AFP对淋巴细胞的作用是复杂的,AFP不象是一种一般的免疫抑制剂。

参考 文献

- [1] Parmely, M. J., Hsu, H. F. Fed. Proc., 32:979 (1973)
- [2] Parmely, M. J., Thompson, J. S, Ibid. 33:812 (1974)
- [3] Cadwell, J. L., Thompson, J. S., Ibid. 38:979 (1973)
- [4] Murgita, R. A., and Tomsa, T. B., J. exo, Med. 141: 369(1975)
- [5] Murgita, R. A., and Tomsa, T.B., ibid. 141: 440 (1975)
- [6] Dattwyler, R.J., and Tomsa, T.B., Int. J. Cancer, 16: 942(1975)
- [7] 上海市肿瘤研究所免疫学、细胞生物学研究室,几种细胞免疫操作方法(交流资料1978)
- [8] 上海市肿瘤研究所免疫学,细胞生物学研究室: 1977 年度工作小结(内部资料).
- [9]上海市肿瘤研究所免疫学,细胞生物学研究室:洪锦心. 胡江琴,田培坤,张前进: 天津免疫会议资料 (1978)
- [10] Cooperhand, S., Bondeo, K. H. and Schmid, K. Science 159: 1243 (1968)
- [11] Murgita, R.A., Scan, J. Immunol., 5: 1003(1976)
- [12] Labib, R.S., Thomas, B. and Tomsi, T.B.

 Immunol. Communication. 7: 223 (1978)
- [13] Charpentier, B. Guttmann, R. P. Shuster, J. and Gold. P. Ibid. 119: 898 (1977)
- [14] Yacgini, S. and Lester, E. P. J. Immunol. 119:555 (1977)
- [16] Alpert, E. Dienstag, J. L. Sepersky, S., Littman. B, and Rocklin, R. Immunol. Communication 7:163 (1978)
- [16] Lester. E. P., Miller. J. B. and Yanchnin. S., Immunol. Communication 77: 137 (1978)
- [17] Tomasi, T. B., Jr. Cell Immunol. 37:459 (1978)