以 CB-F83-Oligo(dT)-纤维素批量亲 和层析分离 poly(A) RNA

孙慧斌 宋秋宝

(中国科学院上海细胞生物学研究所 200031)

Poly(A)RNA 分离是反向转录 cDNA, 构 建 cDNA 文库以及进行差异 杂 交等 的 基础工 作, 也是改善 RNA 凝胶吸 Ep 和 S. 核酸酶 保 护实验质量的基本措施[1]。Poly(A) RNA的 分离主要采用 Oligo (dT)-纤维素柱亲和 层析 的方法[1,2]。我们在非洲爪蟾卵母细 胞及早期 胚胎 Poly (A) RNA 的分离过程中, 先后使 用了Poly(A) Quick Column (Stratagene 产 品)和 Oligo(dT) Cellulose, Type 7(pharmacia 产品) 柱亲和层析以 及 CB-F 83-Oligo(dT)-纤 维素[8](中国科学院上海细胞生物学研究所, 苏州试剂厂产品)批量亲和层析(batch affinity chromatography), 其中以后者的分离效果最 好。下面先介绍一下 CB-F 83-Oligo(dT)-纤维 素批量亲和层析分离 poly (A)RNA 的 实验方 法,然后结合我们的体会,简要分析比较它的 使用效果。

实验方法

- 1. 在 Oligo(dT)-纤维素中加入预冷的约 10 倍体积的 TK₁ 缓冲液(10 mmol/L Tris·C 1, pH 7.5/0.5 冲mol/L KCl),于 4 ℃下溶液过夜,然后用冰冷的 TK₂缓液(50 mmol/LTris·Cl, pH 7.5/2.5 mol/L KCl)平衡备用。
- 2. 将溶于TK₂缓冲液中的总RNA(浓度约为50 A 260/ml) 与处理好的纤维素混合, 置冰箱中吸附数小时。然后用预冷的约 10 倍于纤维素体积的TK₁缓冲液洗涤离心(Eppendorf 离心 机,下同),每次2分钟,6一8次。以除去不吸附的RNA(洗涤离心后,上清液核酸检测应为阴性)。

3. 加入少量 DEPC(焦磷酸二乙酯)处理 过的无菌重蒸水,于55℃保温 10 分钟后,离心 5 分钟洗提 Poly (A) RNA,收集上清,再加入少量 DEPC 处理的无菌蒸馏水。重复洗提 1 次。合并离心上清液,加入0.2 倍体积的 2 mol/L NaCl 和 3 倍体积的冷乙醇,混合后置-20℃ 4 小时以上。用前离心,用 75%的冷乙醇洗涤沉淀,真空抽除残醇,然后溶于少量 DEPC 处理过的无菌重蒸水。

实验体会

下表总结了我们以不同材料和方法分离非 洲爪蟾卵母细胞和 早期 胚胎 Poly(A)RNA 的情况。

最初,我们使用Stratagene 的 Poly(A) Quick Column 分离非洲爪蟾囊胚 和神经 胚的 Poly(A)RNA,得率极低,无法满足实验要求。以后改用 Pharmacia 的 Oligo (dT) Cellulose, Type 7 作柱层析,虽可初步满足实验要求,但得率仍低于预期值^[4]。但在使用这种柱层析分离非洲爪蟾卵母细胞的 Poly(A)RNA时,得率很低。在此情况下,我们试用了 CB-F83-Oligo(dT)-纤维素 批量层析法,取得了成功。Poly(A)RNA的得率高,质量好(用所分离的 Poly(A)RNA 的得率高,质量好(用所分离的 Poly(A)RNA 作模 板 反转录合成 cDNA、构建 cDNA文库,结果令人满意)。我们再把该材料和方法试用于非洲爪蟾囊胚和神经胚 Poly(A)RNA 的分离,也都得到了满意结果。

本文在写作过程中得到庄孝德教授的指导, 特此致谢。

表 非洲爪蟾卵	母细胞和早期胚胎	Poly(A)RNA	分离实验小结□
---------	----------	------------	---------

非涉	洲 `	Poly	(A) Quiok Column* (Stratagene)		Oligo(dT)Cellulose* (Pharmacia)		CB-F 83 Oligo(dT)-纤维素* (国产)				
爪		蟾	总 RNA* (μg)	Poly(A)RNA	得率 (%)	总 RNA* (µg)	Poly(A)RNAΔ (μg)	得率(%)	总 RNA* (μg)	Poly(A)RNA (µg)	得率 (%)
। वृष्	3年	胞				2,000	€1.2	0.06	2.000	45	2.25
嚢		胚	650	€1	0.15	697	4	0.57	500	9	1.8
神	经	胚·	650	≤0.15	0.02	594	9	1.5	500	11	2.2

- □ 用于分离的总 RNA OD 260/OD 280 均在 1.98-2.24 之间。
- * 按产品说明书操作; 表内所列为一次过柱结果。
- * 以紫外分光光度法定量。
- △ 以溴化乙锭-琼脂糖凝胶法定量。

为进一步分析上述实验结果,我们在实验条件完全相同的情况下,同时用以Oligo(dT) Cellulose, Type 7(pharmacia)为亲和体的层析柱分别从非洲爪蟾卵母细胞和某人肝癌细胞株的总 RNA(OD_{260}/OD_{280} 均 $\geqslant 2.0$)中分离 poly (A) RNA。结果,后者的分离效果较好,得率基本在正常范围内(李建明,未发表资料);而前者的分离则很不理想(见表)。

综上所述,Oligo(dT) Cellulose Type 7 (Pharmacia)对 Poly(A)RNA 的分离效果与用于分离的组织或细胞材料有关。用于一般组织或细胞时,可能效果较好,但不适用于如非洲爪蟾卵和早期胚胎一类实验材料。当用于这类材料时,卵母细胞或发育时期较早的,分离效果较差,反之,则较好些。

CB-F 83-Oligo(dT)-纤维素和 Oligo(dT) Cellulose, Type 7(pharmacia)对上述组织细胞 Poly(A)RNA 的不同分离效果,反映出非洲爪蟾卵母细胞和早期胚胎组织的 Poly(A)RNA 在分离特性上存在着不同程度的差异,并可能因此决定或影响两种纤维素(Oligo(dT)Cellulose)在上述实验中的分离效果。至于是何种因素导致了这种差异,以及这种差异是否与在卵母细胞和早期胚胎中大量的卵原性 mRNA 含有共价连接

的重复序列^[6],并以多聚状态存在^[6]等特性有关,都是些很有兴趣的问题,值得进一步研究。

尽管经验有限,但根据我们的体会,至少对非洲爪蟾卵母细胞和早期胚胎这类组织的Poly(A)RNA分离,国产的CB-F83-Oligo(dT)-纤维素优于其他两种国外产品。此外,由于以CB-F83-Oligo(dT)-纤维素作亲和体分离Poly(A)RNA通常采用批量亲和层析的方法,因而方便省时,具有很强的实用性。

参考文献

- [1] Davis, L. G., et al., 1986, Method in Molecular Biology., pp. 139—142, Elsevier Science Publishing Co, Inc., New York. Amsterdam. London.
- [2] Sambrook, J. et al., 1989, Molecular Cloning. A Laboratory Manual., 2 nd Ed., pp. 7.26—7.29, Cold Spring Harber Laboratory Press, Cold Spring Haiber.
- [3] 上海实验生物学研究所三室等, 生物化学与 生物物理进展, 1977, 4:8.
- [4] Davidon, E. H., 1976, Gene Activity in Early Development., 2 nd Ed., Academic Press, New York.
- [5] Anderson, D. M. et al., 1982, J. Mol. Biol., 155: 281.
- [6] Ballantine, J. E. M. et al., 1979, J. Embryol. Exp. Morphol., 51, 137.