精子顶体反应期间磷脂酶 A2 的信号转导及其调节

李 坤1,2△ 石其贤1 倪 崖1,2*

(1) 浙江省医学科学院,杭州310013;2温州医学院,温州325035)

摘要 磷脂酶 A_2 是精子重要的脂解酶类,包括多种不同亚型。在精子顶体反应期间磷脂酶 A_2 受天然激动剂卵透明带、孕酮和 γ -氨基丁酸激活,引起胞外 Ca^{2+} 内流,使磷脂水解为花生四烯酸和溶血磷脂酰胆碱,从而促进膜的融合即顶体反应。天然激动剂引起 PLA_2 激活受 G_i 蛋白、甘油二酯、蛋白激酶 A、蛋白激酶 C、促分裂原蛋白激酶和活性氧等多条信号通路的调节,此外,磷脂酶 A_2 与特异性磷酯酶 C之间可以发生信号串话。研究 PLA_2 的信号通路为了解受精机制、男性不育之病因和开发男性避孕药提供依据。

关键词 磷脂酶 A,;精子;顶体反应;信号转导

人及哺乳动物精子顶体反应(acrosome reaction, AR)是受精的前提,AR 是指精子质膜与顶体外膜多点融合和形成囊泡化过程。正常情况下,精子穿过卵丘细胞及其胞外基质,与透明带(zona pellucida, ZP)结合并诱发 AR。AR 将各种酶类释放出来,促进精子穿过 ZP 和卵膜融合。与此同时,精子内部发生一系列生理和生化变化。膜磷脂的变化就是其中重要一类,这一过程中,磷脂酶 A_2 (phospholipase A_2 , PLA_2)具有重要作用。

1 PLA₂的概述

PLA,可以水解甘油磷脂的顺式 2 位乙酰酯键, 催化磷脂酰胆碱(phosphatidylcholine, PC)释放花生四 烯酸(arachidonic acid, AA)和溶血磷脂酰胆碱(lysophosphatidyl choline, lysoPC)等脂类信号分子。AA 是炎症介质前列腺素、凝血酶原激酶、白三烯、脂 氧素(lipoxins)等廿烷类衍生物的前体; 当磷脂在顺 式1位有酯酰键时,lysoPC 可以继续形成血小板激 活因子(platelet-activating factor, PAF)[1]。PLA2由于 具有代谢脂类、介导炎症等重要的生理功能,特别 是PLA。的信号通路阻断后则可以达到某些消炎等目 的,能作为药物的靶点进行新药开发,已成为研究 的热点。PLA₂是一个正在增长的脂解酶超家族,按 核酸和氨基酸序列不同, PLA2有 I~XIV 个亚型; 哺乳动物PLA2根据对Ca2+的依赖与否还可分为以下 几类: 需要毫摩尔浓度 Ca2+ 的分泌型(secretory phospholipase A2, sPLA2: IB, IIC, IID, IIE, IIF, III, V、X、XII)、需要微摩尔浓度 Ca2+ 的胞质型

(cytosolic Ca²+-dependent phospholipase A_2 , cPL A_2 : IVA、IVB、IVC 或者 cPL A_2 α、cPL A_2 β、cPL A_2 γ)、无需 Ca²+ 的非 Ca²+ 依赖型(cytosolic Ca²+-independent phospholipase A_2 , iPL A_2 : VIA、VIB)和有水解 PAF能力的 PAF 酰基水解酶型(platelet-activating factor acetyl-hydrolase, PAF-AH: VIIA、VIIB、VIIIA、VIIIB) $^{[2]}$ 。 迄今已经证明在哺乳动物至少有 19种具有PL A_2 活性的蛋白质 $^{[1]}$ 。本文结合本实验室工作,主要综述精子 AR期间 PL A_2 信号转导通路及其调节。

2 人及哺乳动物精子内的PLA,

精子PLA₂的功能可能不如它在体细胞中那样明显,因而未能受到重视,研究相对不多。从人精子中分离纯化的PLA₂,分子量约为16.7 kDa,其分子序列N末端部分的前19个氨基酸序列是YNYQ-FGLMIVITKGHFAMV,显示出进化的高度保守性^[3]。抗眼镜蛇毒抗体可以识别牛精子中提取的16 kDa蛋白质,而抗胰腺PLA₂的抗体可识别仓鼠及人精子上的蛋白质,这些抗体已用作免疫定位,用免疫细胞化学方法发现仓鼠精子顶体上有明显的标记,在尾部中段的线粒体上也有散在免疫金颗粒,说明可能有PLA₂分布。此外覆盖在顶体质膜表面上也有PLA₂,可能与AR有关^[4],抗胰腺PLA₂的抗体能抑

收稿日期: 2005-11-10 接受日期: 2006-02-13

卫生部科学研究基金(浙江省医药卫生重大科技项目)(No. WKJ2005204701)和浙江省自然科学基金(No. Y204490)资助项目

△联合培养硕士研究生

* 通讯作者。Tel: 0571-88215476, Fax: 0571-88075447, E-mail: niva99@china.com

制仓鼠精子 AR 和体外受精,但对精子运动和超激活运动没有影响^[5]。有报道用酸来提取 PLA_2 ,则不能检测出大分子量胞质型同工酶^[6]。

人及哺乳动物精子中 PLA, 的种类报道不多。 最近用免疫印迹的方法在小鼠精子中检测到 sPLA。-IIC, sPLA2-IID, sPLA2-IIE, sPLA2-IIF, sPLA2-V、sPLA₂-X 几个亚型。sPLA₂-IIE、sPLA₂-V、 sPLA₂-X 位于小鼠顶体,同工酶在不同时期表达不 同。在早期生精细胞表达 PLA₂-IIC 和 PLA₂-V,在 精母细胞及其后期表达 PLA₂-IIE 和 PLA₂-X, PLA₂-IID 和 PLA2-IIF 则在精子细胞表达[7]。在检测人睾丸 和附睾中PLA,时发现,除了PLA,-IIC外,上述其 他亚型在人类均有表达,因为Pla2g2c在人类是没 有功能的假基因[8]。用同源重组方法破坏PLA₂-VIA (iPLA₂β)引起小鼠精子活力下降,在体内体外受精 能力也受到损伤,此结果说明PLA,-VIA 在精子功能 中起着重要作用。但对睾丸脂类形成并未受到严重 影响[9]。精子PLA,亚型报道较晚,而且只限于 sPLA。和 iPLA,,终究有没有 cPLA, 是由于提取方 法不当,还是精子中不存在 cPLA₂,尚需进一步的 研究。PLA₂亚型不同,其信号通路也有差异。若 不了解精子PLA。亚型将制约其在AR期间信号转导方 面的研究,因而当前亟待解决精子PLA2的亚型问题。

在研究 PLA, 功能时常采用药理学上的策略。 PLA, 常见抑制剂有 bromophenacylromide (pBPB)、 arachidonyl trifluoromethyletone (AACOCF3). methylarachidonyl fluomphosphate (MAFP). bomoenol lactone (BEL), diisopropytfluorophospate (DFP)和 dristolochic acid (ATA)。pBPB 可抑制 sPLA2; AACOCF3 和 MAFP 可抑制 cPLA2和分子量 为80 kDa的iPLA,; BEL则抑制iPLA,; DFP抑制 PLA₂-AH^[10], 而 ATA 主要抑制 Ca²⁺ 依赖型 sPLA₂。 此外精子PLA,抑制剂还有麦帕克林、地塞米松、 chloracysin、烷基胺 Ro-4493 和 Ro-4936 等。麦帕 克林抑制金仓鼠、豚鼠和小鼠精子的PLA。活性,但 不影响羊及人的 PLA, 活性; ATA 和 pBPB 抑制人和 金仓鼠、豚鼠、小鼠等动物精子的PLA2活性;地 塞米松、chloracysin、烷基胺 Ro-4493 和 Ro-4639 则可抑制羊精子PLA2活性[11]。

3 精子PLA₂激活及其信号通路

早期研究虽提出了PLA₂可能参与精子AR,但 大多数研究用PLA₃抑制剂阻断精子自发性及诱发性

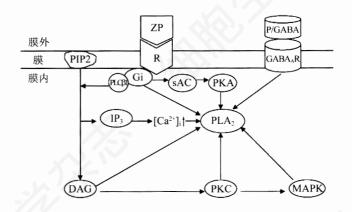


图 1 精子顶体反应期间 PLA₂ 的信号转导通路

AR,或加入外源性激活 PLA₂的代谢产物 AA 或 LysoPC 引起 AR[12]。但是没有一项研究标记精子脂 类, 也未测量脂肪酸释放, 因为未能提供脂类变化 与发生AR之间的直接依据[11]。直到 Roldan 等[13]采 用AR人工激动剂ionophoreA23187研究PLA。与AR 之关系。他们采用14C-AA或3H-Pi标记精子磷脂作 为前体,但ionophoreA23187激活PLA。并非通过正 常 T- 型或 L- 型 Ca2+ 通道而是旁路, 因此 PLA。激活 与AR之间的关系仍未真正解决。最近,我们课题 组采用豚鼠精子为研究对象,以14C-AA和14C-氯化 胆碱作为前体标记精子,然后用AR天然激动剂ZP、 孕酮(progesterone, P)和GABA (γ-aminobutyric, GABA) 激发精子 AR。证明了①增加 AA 和 LysoPC 释放并 伴随 PC 下降,随后发生膜融合 AR 之间密切相关; ②刺激 Ca2+ 内流导致 AA 或 LysoPC 呈时间和浓度依 赖性增加, AA 释放之浓度与 AR 之间密切相关[14]。 这些结果有力支持在天然激动剂引起 AR 中 PLA。起 关键作用[15]。但是不同天然激动剂激活 PLA。引起精 子 AR 的信号转导通路途径不同。根据上述研究, 我们提出了精子AR期间PLA2的信号转导通路(图 1)。

3.1 Ca2+介导PLA₂激活

PLA₂的激活需要胞外 Ca²⁺ 的存在。获能的精子可以导致 Ca²⁺ 内流,无论是精子提取物还是经过 P刺激的精子,PLA₂ 活性测定都需要毫摩尔 Ca²⁺。在含有毫摩尔 Ca²⁺ 的培养基中用 ZP刺激精子 AA 和lysoPC 浓度显著升高,表明 PLA₂ 被激活,这种结果是因为 ZP 促进胞外 Ca²⁺ 内流,而在含 EGTA 或La³⁺ 培养基中 ZP刺激不能使精子 AA 和lysoPC 释放增加和 AR 发生^[14],因为 EGTA 可以螯合胞外 Ca²⁺ 而 La³⁺ (Ca²⁺ 通道阻断剂)则能阻止 Ca²⁺ 内流。 ZP 刺

412 · 综述·

激精子发生AR时, Ca2+可能通过离子通道大量进入 精子内部,可直接激活 PLA_2 ;还可经过 G_i 蛋白结 合的 ZP 受体激活 PLCg1 调节腺苷环化酶(adenylate cyclase, AC)引起环腺苷酸(cAMP)上升和蛋白激酶 A (protein kinase A, PKA)激活, PKA 激活将引起顶体 外膜上电压依赖 Ca2+ 通道打开, 引起顶体内 Ca2+ 从 顶体内释放到胞质,此时可激活特异性磷酯酶 Cγ (phospholipase Cy), PLCy催化二磷酸磷脂酰肌醇 (phosphatidylinositol 4,5-bisphosphate, PIP2)生成甘油 二酯(diacylglycerol, DAG)和三磷酸肌醇(inositiol triphosphate, IP3), IP3 将导致胞内 Ca2+ 更高上升, 从而激活PLA₂。GABA引起精子AR期间PLA₂激活, 可能因为GABA可以与GABAA受体/氯离子通道结 合,引起胞外 Ca2+ 内流[16],不同亚型 PLA,的调节 与 Ca2+ 之间的关系在体细胞已有报道。iPLA, (VIA、 VIB)活性尽管不需要 Ca²⁺, 但是可被胞内贮存 Ca²⁺ 和钙调蛋白(calmodulin, CaM)调节。细胞内贮存 Ca²⁺排空可诱导iPLA₂活性,也与CaM调节iPLA₂活 性相关。受到 Ca2+ 排空作用的 iPLA, 结合部位负责 CaM 对 iPLA。活性调节[17]。 胞内钙的增加幅度和持 续时间对 cPLA₂α (IVA)的活性很重要,在多数情况 下, Ca²⁺ 依赖的 cPLA₂α 与磷脂作用必需从胞质转 移到胞膜上。胞质内 Ca²⁺ 增加使 cPLA₂α 定位于膜 上,使 Ca^{2+} 充分激活 $cPLA_2\alpha$; 当胞内 Ca^{2+} 浓度增 加超过一定时间后又回到原来水平时,cPLA。在核周 区持续数分钟,同时被磷酸化。其磷酸化受带负电 荷脂质和催化区疏水基团调节[18]。精子 AR 期间 PLA₂激活需要毫摩尔 Ca²⁺,可能是由于 sPLA₂存 在;在无 ZP 刺激下,PLA2 仍有部分激活[15],能 否说明有其他亚型的 PLA2 也受 Ca2+ 调节,尚待证明。

3.2 G蛋白介导PLA₂激活

精子细胞存在 G 蛋白,ZP 刺激 PLA_2 激活通过 G_i 蛋白介导,从而导致 AR : 相反,在 G_i 蛋白敏感抑制制百日咳毒素(pertussis toxin, PTX)存在时,ZP 刺激精子则无 AR 发生,表明精子 PLA_2 活性与 G_i 蛋白有关,因为可阻断 AA 的释放和 $AR^{[14]}$ 。但是, G_i 蛋白是直接参与 PLA_2 调节,还是通过激活 G_i 蛋白的其他通路激活 PLA_2 ,目前还不清楚。其他通路如: G_i 蛋白偶联的可溶性腺苷酸环化酶(soluble AC, SAC)激活引起 Ca^{2+} 内流,CAMP 升高或激活磷酸肌醇酶特异磷脂酶 C (phosphoinositide-specific phospholipase C, PI-PLC)介导的 DAG 产生等。这些问题尚待研究。有报道称 P 激活 AR 可被 G 蛋白

加速,需要同时激活 PLA₂ 和 PLC (phospholipase C, PLC),才能最后促进 AR^[19]。在某些体细胞内 PLA₂ 活性被 PTX 阻断是由于 PLC 和 Ca²⁺ 信号被抑制^[20]。 **3.3 DAG** 调节 PLA, 的活性

在精子 AR 期间,DAG 可直接激活 PLA₂。内源性 DAG 可以调节 PLA₂ 的活性,内源性 DAG 在 DAG 激酶抑制剂 R59022 作用时增加,同时用 ZP 和 GABA刺激豚鼠精子可以导致PLA₂活性与AR率的增加^[14,21];此外,DAG 也可增强羊精子 PLA₂ 的活性^[22,23]。尽管 DAG 可以直接激活精子 PLA₂ 的活性,但是 DAG是否在刺激蛋白激酶C (proterin kinase C, PKC) 后导致促分裂原蛋白激酶(mitogen-activated protein kinase, MAPK)磷酸化,再激活 PLA₂,还需要进一步 证 实。

3.4 PKA 调节PLA₂的活性

PKA与AR相关的早期证据是,在AR过程中证明AC活性与cAMP产生增加相关,用AC激动剂forskolin和二丁酰基cAMP诱导哺乳动物精子AR时呈现剂量依赖性。此外,PKA抑制剂可以抑制P诱导AR^[15,24]。PLA₂活性受PKA调节,是PKA的抑制剂14-22amide和H-89可抑制豚鼠精子在ZP、P或GABA引起AA释放和AR增加,其调节通路可能通过刺激sAC催化ATP生成cAMP,激活PKA途径^[15]。3.5 PKC调节PLA₂的活性

PKC 在生理性 AR 精子信号转导中起重要作用 $[^{25]}$ 。 P 刺激人精子介导 PKC 的各种底物磷酸化。 PKC 调节 PLA₂ 的活性,其原因是 PKC 抑制剂 staurosporine 和 chelerythrine chlride 抑制 ZP、P 或 GABA刺激精子的AA释放 $[^{15]}$ 。 PKC的激活又受DAG 的调节。在体细胞中,有学者提出 PKC α 与 iPLA₂ 介导 AA 释放有关,PKC α 的下调和 PKC α 抑制剂的 作用降低了PLA₂的活性和AA释放。而PKC ϵ 与iPLA₂ 活性有关 $[^{17]}$ 。

3.6 MAPK 调节PLA, 的活性

据新近报道,精子 AR 过程中,天然激动剂引起 PLA₂ 激活也受 MAPK 信号转导通路的调节。 ZP、P或 GABA 诱导精子的 AA 释放和 AR 能被 ERK1/2 的抑制剂 U0126 和 PD98059 阻断,但不能被无活性的U0126 类似物 U0124 阻断^[25]。 ERK1/2 是 MAPK 家族成员 p42/p44。 在多种细胞中激活剂诱导 p42/p44 (ERK1/2)磷酸化和 cPLA₂ 活性有关。 在某些体细胞中,激动剂刺激细胞 cPLA₂ 活性增加是由于被 MAPK在 Ser505 位磷酸化。在中国仓鼠卵中 S505A 突变,

cPLA₂大量表达,也不能增强激动剂诱导 AA 释放,而野生型表达则能增强激动剂诱导的 AA 释放^[26]。在另一些体细胞中,Ser505 磷酸化通过与膜的缓慢游离以提高 cPLA₂α 对膜的亲合性。但是有些报道证明在刺激细胞野生型 cPLA₂α 和 S505A 突变的 cPLA₂α 在膜转位的方面没有区别。Ser505 的磷酸化可导致构象的改变,因为这些残基在 C2 区和催化区的可变连接处,但是没有直接证据 ^[18]。 大多数细胞中,MAPK 磷酸化 PLA₂ 是 cPLA₂,如果在AR 期间 MAPK 途径与 PLA₂ 活性有关,那么精子PLA₂可能存在有 cPLA₂亚型。关于在AR 期间 MAPK 调节作用,一些研究由于找不到证据而持不同观点。3.7 活性氧调节 PLA₂ 的活性

活性氧(reaction oxygen species, ROS)包括过氧化氢(H_2O_2)、超氧阴离子、羟基等,在刺激剂作用时在细胞内发生不同生物反应。近来发现ROS是一个潜在激活 iPLA₂的因素,某些体细胞里 H_2O_2 可导致 AA 大量释放,同时 iPLA₂ 活性增加,而且是不依赖胞内 Ca^2 +浓度,AA释放和iPLA₂活性还均能被BEL 完全抑制^[17]。在牛精子中 H_2O_2 也能激活 PLA_2 ^[27],在人精子中,ROS 可以上调几种蛋白质的酪氨酸磷酸化,可以激活 sAC 产生 cAMP,随后激活丝 / 苏氨酸激酶 $A^{[28]}$ 。最近研究表明诱导精子 AR 时 ROS与酪氨酸磷酸化有关^[24],但机制仍不清楚。

3.8 PLC 与 PLA2 信号通路间的信号串话(crosstalk)

信号串话,指精子在GABA、P、ZP等天然激动剂引起的AR后,激活PLC产生的信号分子DAG可将PLA₂和PLC两条信号通路串联,从而增强AR。DAG在AR中起中心作用。精子受GABA、P或者ZP刺激经历AR,通过受体激活PI-PLC和磷酯酰胆碱特异性脂酶 C (phosphatidylcholine-specific phospholipase C, PC-PLC)^[29],在 Ca²⁺ 的存在下,产生不同类型 DAG 和烷酰基甘油,对PLA₂进行调节,可达到增强 AR 的效果。PLC对PLA₂具有调节作用,但 PLA₂ 能否调节 PLC 尚不清楚,需进一步研究。

4 激活精子 PLA_2 引起脂类释放从而导致 AR

激活 PLA_2 对于 AR 是必需的。有证据表明用 PLA_2 抑制剂处理精子后精子不能发生自发性或诱发性 AR,但是用 PLA_2 代谢产物溶血磷脂和脂肪酸处理精子,可以加速 $AR^{[11]}$ 。如果 PLA_2 被抑制,则

Ca²⁺ 内流完全不能发生^[30]。PLA₂ 及其代谢产物 lysoPC 有助于哺乳动物精卵融合。PLA₂ 位于精子发生 AR 的区域,特异的 PLA₂ 抗体可以抑制精卵融合,但不能抑制精子与卵膜的黏附^[31]。由 PLA₂ 激活而产生的 lysoPC 可能是形成 PAF 的底物,在 P刺激下磷脂的形成能进一步增强 AR,而且,在体外用 PAF 处理人精子可增强其对去透明带仓鼠卵的穿透能力。在体外用 PAF 处理可以大大提高 ICSI 和 IVF 的受精率,而且对胚胎的发育没有伤害^[24]。

5 小结

精子PLA₂是一种重要的磷脂酶类,在AR期间 发挥着重要的作用,并受到各种信号通路的调节, 这些信号通路在细胞中同时存在,甚至不同通路存 在相互协调。尽管精子PLA₂及其信号通路研究进展 迅速,但是对其亚型的确定和信号通路等方面仍存 在许多问题:精子除 sPLA₂ 和 iPLA₂外,是否还有 其他PLA₂亚型? ZP刺激PLA₂的信号通路是通过G_i 蛋白直接还是间接激活PLA₂? 还是两者并存? DAG 对 PLA₂ 的激活是否通过 PKC 而起作用? ROS 激活 PLA₂ 的机制是什么?等等。这些课题的深入研究将 有助于人们对受精过程的更深入了解,为男性不育 症诊断和治疗及避孕药物设计拓宽新的思路,具有 重大的理论与实践意义。

参考文献 (References)

- [1] Balsinde J et al. FEBS Lett, 2002, 531: 2
- [2] Six DA et al. Biochim Biophys Acta, 2000, 1488: 1
- [3] Langlais J et al. Biochem Biophys Res Commun, 1992, 182: 208
- [4] Riffo M et al. Histochemistry, 1992, 97: 25
- [5] Riffo MS et al. J Exp Zool, 1996, 275: 459
- [6] Mayer RJ et al. FASEB J, 1993, 7: 339
- [7] Masuda S et al. Biochim Biophys Acta, 2004, 1686: 61
- [8] Tischfield JA et al. Genomics, 1996, 32: 328
- [9] Bao S et al. J Biol Chem, 2004, 279: 38194
- [10] Roberts MF et al. FASEB J, 1996, 10: 1159
- [11] Roldan ER. Front Biosci, 1998, 3: D1109
- [12] Fleming AD et al. Gamete Res, 1981, 4: 253
- [13] Roldan ER et al. J Biol Chem, 1993, 268: 13962
- [14] Yuan YY et al. Biol Reprod, 2003, 68: 904
- [15] Shi QX et al. J Cell Physiol, 2005, 205: 344
- [16] 张振汉等。*生理学报*, 2000, **52**: 179
- [17] Akiba S et al. Bio Pharm Bull, 2004, 27: 1174
- [18] Hirabayashi T et al. Biol Pharm Bull, 2004, 27: 1168
- [19] Pietrobon EO et al. Mol Reprod Dev, 2005, 70: 58
- [20] Ekokoski E et al. J Cell Physiol, 2000, 183: 155
- [21] Chen WY et al. FEBS Lett, 2005, 579: 4692
- [22] Roldan ER et al. Biochem Biophys Res Commun, 1991, 176:

20

- [23] Roldan ER et al. Biochem J, 1994, 297: 225
- [24] Baldi E et al. Front Biosci, 2000, 5: E110
- [25] Chen WY et al. Acta Pharmacol Sin, 2000, 21: 787
- [26] Leslie CC et al. J Biol Chem, 1997, 272: 16709
- [27] Shit S et al. Indian J Exp Biol, 2004, 42: 486
- [28] Breitbart H et al. Rev Reprod, 1999, 4: 151
- [29] Yuan YY et al. Sci China Ser C, 2001, 44: 345
- [30] Dominguez L et al. Mol Reprod Dev, 1999, 52: 297
- [31] Riffo MS et al. J Exp Zool, 1997, 279: 81

Signal Transduction and Regulation of Phospholipase A₂ during Acrosomal Exocytosis in Spermatozoa

Kun Li1,2, Qi-Xian Shi1, Ya Ni1,2*

(\text{\bar Zhejiang Academy of Medical Sciences, Hangzhou 310013, China; \text{\bar 2Wenzhou Medical College, Wenzhou 325035, China)}

Abstract Phospholipase A₂ (PLA₂) is an important lipolytic enzymes in spermatozoa, which be constituted by some distinct subtypes. Activation of PLA₂ is induced by calcium influx and subsequent membrane fusibility during acrosome reaction in spermatozoa. Activation of PLA₂ is regulated by many signaling pathways: G_i-protein, diacylglycerol, protein kinase A, proterin kinase C, mitogen-activated protein kinase and reaction oxygen species. In addition, the crosstalk between PLA₂ and phospholipase C may occur by mediating of endogenous diacylglycerol. Clarifying the PLA₂ signaling pathways during acrosome reaction in spermatozoa could provide the basis for fertilization mechanism, possible new methods for diagnosis and treatment of male infertility and strategies for contraceptive.

Key words phospholipase A₂; spermatozoon; acrosome reaction; signal transduction

Received: November 10, 2005 Accepted: February 13, 2006

This work was supported by the Science and Research Foundation of Ministry of Health (Medicine Health Key Science & Technology Project of Zhejiang Province, No.WKJ2005204701) and the Natural Science Foundation of Zhejiang Province (No.Y204490)

^{*}Corresponding author. Tel: 86-571-88215476, Fax: 86-571-88075447, E-mail: niya99@china.com