The N-Finger Peptide of SARS-CoV 3CL^{pro} is Essential for the Enzyme Activity

Sun-Hua Zhang^{1,2}*, Ming-Fang Ji³, Xiao-Xia Shao²

(¹Department of Biology, School of Life Science, East China Normal University, Shanghai 200062, China; ²Institute of Protein Research, Tongji University, Shanghai 200092, China; ³Scino Pharm Kunshan Biochemical Ltd. Co, Kunshan 215300, China)

Abstract The genes encoding 3CL protease $(3CL^{pro})$ of SARS virus and its mutant $3CL^{pro}(\Delta_{1-7})$ were constructed and expressed in *E.coli* system. The $3CL^{pro}$ showed a proteolytic activity on the fluorogenic substrate containing the consensus auto-cleavage site of $3CL^{pro}$. However, the $3CL^{pro}(\Delta_{1-7})$ mutant showed no enzymatic activity at the same conditions as wild type did, indicating that the N-finger peptide of $3CL^{pro}$ is essential for the enzymatic activity though it is not the enzyme reactive center. We also synthesized the N-finger peptide by solid-phase peptide synthesis method and this peptide showed partially inhibitory effect on the SARS 3CL protease.

Key words SARS-coronavirus; 3CL protease; N-finger peptide

Atypical pneumonia, with overall fatality rates of about 10%, characteristic of high fever, headache, and nonproductive cough emerged in southern China in late 2002^[1,2] and then rapidly spread to other countries. The disease was later named the severe acute respiratory syndrome (SARS) by WHO, and a novel coronavirus, termed SARS-CoV, was rapidly identified as the pathogenic agent^[3,4]. Subsequently, its genome sequence has been elucidated^[5]. It is generally believed that SARS-CoV has evolved from an animal coronavirus that recently crossed the species barrier^[6].

Coronaviruses are enveloped, plus-strand RNA viruses that feature the largest RNA genomes currently known^[7]. Through ribosomal frame shift switching, the replicase gene of SARS coronavirus is translated into two polyproteins with overlapping sequences^[8]. Replicative polyproteins 1a and 1ab are essential for virus RNA synthesis. The central and C-terminal regions of these polyproteins are cleaved into functional proteins by 3CL^{pro}, a protease with a chymotrypsin-like fold. 3CL^{pro} encoded and located at the central part of replicase gene is auto-processed at the help of hydrophobic proteins encoded also by virus gene, and is released from the polyprotein^[9]. Because of its distant relationship with the 3C proteases of picornaviruses, this protease is named 3C-like protease (3CL^{pro})^[9]. 3CL^{pro} plays a pivotal role in coronavirus polyprotein processing and also releases the key replicative functions of the virus, such as RdRp and helicase; therefore, it is also called the coronavirus main protease^[9]. Due to its functional importance in the viral life cycle, 3CL^{pro} has been made an attractive target for developing drugs directly against the new disease.

Recently, Yang *et al.*^[10] solved the crystal structure of 3CL^{pro}. This protease employs a catalytic Cys-His dyad and has a three-domain structure. The first two domains form a chymotrypsin-like fold, which is responsible for the catalytic reaction. The third domain is α -helical unique to the coronavirus 3CL proteases, which contributes to the dimerization of 3CL^{pro}, thus switching the enzyme from the inactive form (monomer) to the active form (dimer)^[11]. The N-terminal residues 1–7 (N-finger) play an important role in the dimerization and formation of the active site of 3CL^{pro[10,12]}. Here we report clone and expressed 3CL^{pro} and its mutant 3CL^{pro} (Δ_{1-7}). The wild type exhibited an enzyme activity while the mutant didn't suggesting that the N-finger is essential

Received: April 9, 2005 Accepted: July 14, 2005 This work was supported by the Major State Basic Research Development Program of China (973 Program) (No.2003CB514107)

^{*}Corresponding author. Tel: 86-21-65988805, Fax: 86-21-65988403, E-mail: zhangsh0108@126.com

for maintenance of enzyme activity. In addition the synthesis of the N-finger peptide by solid-phase peptide synthesis method and its inhibitory effect on the SARS 3CL protease was described. These results might provide a clue to design a specific inhibitor on 3CL^{pro} targeting out of its active site.

1 Materials and Methods

1.1 Materials

The plasmid pGEX-M^{pro}, which contains the DNA sequence of SARS 3CL^{pro}, was a kind gift from Prof. Zhi-He Rao. Restriction enzymes *Bam*HI and *Xho*I were purchased from New England Biolabs (NEB); *Pfu* DNA polymerase from MBI Fermentas; T4 DNA ligase from TaKaRa; IPTG and DTT from Sigma; the GST affinity matrix from Amersham-Pharmacia Biotech; enterokinase light chain from New England Biolabs (NEB); protein quantitative analysis kit from Shenergy Biocolor Company (China). All other chemicals in this study were of analytical or higher grade.

1.2 Construction of the GST-fusion plasmids of pGEX-6P-1-3CL^{pro} and pGEX-6P-1-3CL^{pro} (Δ_{1-7})

The GST-rhinovirus protease was used to release 3CL^{pro} from the fusion protein transformed from the original plasmid provided by Prof. Rao. This cleavage leaves 5 extra amino acid residues (Gly-Pro-Leu-Gly-Ser) upstream from the N-terminal of 3CL^{pro}. In order to remove these 5 extra residues, the expression plasmid pGEX-6P-1-3CL^{pro} was reconstructed, and the enterokinase cleavage site DDDDK was introduced (GAT GAC GAT GAC AAG upstream from the 5' end of 3CL^{pro}). A forward primer of 5'-CGG GAT CCG ATG ACG ATG ACA AGA GTG GTT TTA GGA AAA TGG CAT TC-3' and a reverse primer of 5'-CCG CTC GAG TTA TTG GAA GGT AAC ACC AGA GCA T-3' were designed to amplify the DNA fragment encoding the entire 3CL^{pro}. The PCR products encoding 3CL^{pro} without 5 extra amino acid residues were cloned into the pGEX-6P-1 vector (Pharmacia) and sequenced using BamHI/XhoI restriction sites.

The plasmid pGEX-6P-1-3CL^{pro} (Δ_{1-7}) with 1–21 nucleotide deleted at the 5' end was also constructed to produce the N-finger peptide truncated 3CL^{pro}. The

forward primer was 5'-CGG GAT CCG ATG ACG ATG ACA AGT TCC CGT CAG GCA AAG TTG AAG GT -3', and the reverse primer 5'- CCG CTC GAG TTA TTG GAA GGT AAC ACC AGG CAT -3', the template was pGEX-M^{pro}. The enterokinase cleavage site gene was also inserted upstream of the 3CL^{pro} gene.

1.3 Expression and purification of recombinant proteins $3CL^{pro}$ and $3CL^{pro}$ (Δ_{1-7})

The expression constructs were transformed into the Escherichia coli strain BL21 to over-express the GST-fusion proteins. Briefly, the cells were cultured at 37 °C until the absorbance at 600 nm reached 1.2. Then 0.5 mmol/L IPTG was added into the cell culture to induce the foreign protein expression at 30 $^{\circ}$ C for 3 h. The cells was then spanned down and sonicated in 1 imesPBS (140 mmol/L NaCl, 2.7 mmol/L KCl, 10 mmol/L Na₂HPO₄, 1.8 mmol/L KH₂PO₄, pH 7.3), 1 mmol/L DTT, 1% Triton X-100, 100 µg/ml PMSF to release GST-proteins. The supernatant was subsequently loaded on a GST-affinity column pre-equilibrated with $1 \times PBS$ and washed with 20 mmol/L Tris-HCl buffer (pH 8.0). Then the column was eluted with 15 mmo/L reduced glutathione in 20 mmo/L Tris-HCl buffer (pH 8.0). The GST-proteins solution was added with urea and guanidine hydrochloride to a final concentration of 1 mmo/L, and then cleaved with enterokinase for 16 h at room temperature to release 3CL^{pro} or its mutant. The mixture was dialyzed and reloaded on the glutathione Sepharose beads pre-equilibrated with $1 \times PBS$ to remove GST. The purified proteins 3CL^{pro} and its mutant were then dialyzed, lyophilized, and then stored at -80 °C

1.4 Enzyme activity assay with a fluorogenic substrate

The enzyme activity of the full-length $3CL^{pro}$ and $3CL^{pro}(\Delta_{1-7})$ was measured by continuous kinetic assays using the fluorogenic substrate containing a consensus auto-cleavage site of $3CL^{pro}$ (Dabcyl-KTSAVLQSGFRKME-Edans, the cleaved peptide bond is bolded) kindly provided by Prof. Po-Huang Liang. The released fluorescence was monitored at 37 °C in the period of 120 s on the fluorescence spectrophotometer^[13,14] (F-2500, Hithachi, Japan), using an excitation and an emission

wavelength of 355 nm and 538 nm, respectively. The final concentration of substrate dissolved in 20 mmo/L Bis-Tris (pH 7.0) containing 2 mmo/L DTT was 480 nmo/L. The final concentration of enzyme added was 34 nmo/L.

1.5 Peptide synthesis

The N-finger peptide: H_2N -Ser-Gly-Phe-Arg-Lys-Met-Ala-COOH were prepared by solid-phase peptide synthesis and purified by high-performance liquid chromatography (HPLC) on a reversed-phase C8 column^[15] (10 mm × 250 mm, Beckman, USA). Identity and homogeneity of the peptides were confirmed by mass spectrometry and analytical reversed-phase chromatography. **1.6** N-finger peptide partial inhibits on SARS 3CL protease

The partially inhibitory effect of N-finger was measured in a reaction mixture containing 34 nmol/L SARS 3CL protease, 480 nmol/L fluorogenic substrate in a buffer of 20 mmol/L Bis-Tris (pH 7.0), 2 mmol/L DTT in the presence of various concentrations of Nfinger peptide, which ranged from 50 μ mol/L to 300 μ mol/L. The fluorescence change resulted from the reaction was followed with time using the fluorescence spectrophotometer (F-2500, Hithachi, Japan). Protease (final concentration of 34 nmol/L) was incubated for 15 min at 37 °C with the N-finger peptide (final concentration of 50 μ mol/L to 300 μ mol/L) and the reaction was initiated by adding substrate to the desired final concentration (34 nmol/L for experiments at a constant substrate concentration).

2 Results

2.1 Expression and purification of the recombinant 3CL^{pro} and its mutant

To express a fusion protein containing the complete $3CL^{pro}(\Delta_{1-7})$, the bacterial expression vector pGEX-6P-1- $3CL^{pro}(\Delta_{1-7})$ was constructed as described in Materials and Methods. This construct encodes a fusion protein that is essentially composed of the N-terminal glutathione S transferase fused to $3CL^{pro}(\Delta_{1-7})$. The expression construct was transformed into *E.coli* strain B21. After induction, the cells were sonicated, the GST- $3CL^{pro}(\Delta_{1-7})$ fusion protein was bound to the GST-affinity column from the supernatant of the lysate, and eluted by the reduced glutathione (Fig.1, Fig.2). The final yield of fusion protein was about 10 mg/L culture. The fusion protein was then cleaved with enterokinase, and the GST was removed by using GST-affinity chromatography. The Coomassie blue-stained SDS-PAGE revealed that one major band of the recombinant $3\text{CL}^{\text{pro}}(\Delta_{1-7})$ protein was in the unbound fraction (Fig.3). The purified $3\text{CL}^{\text{pro}}(\Delta_{1-7})$ did not contain extra 5 amino acid residues as

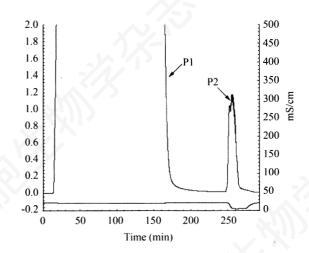


Fig.1 Purification of GST-3CL^{pro} (Δ_{1-7}) fusion protein by GST affinity chromatography

P1 peak represents the impurity proteins of the lysate flowing through the GST column; P2 peak represents the eluted GST-3CL^{pro} (Δ_{1-7}) fusion protein by the reduced glutathione.

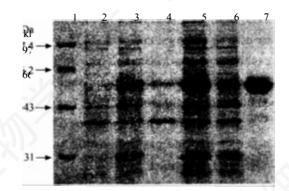
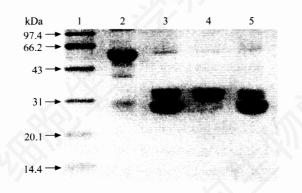



Fig.2 SDS-electrophoresis of the GST-3CL ^{pro} (Δ_{1-7}) fusion protein

GST-3CL^{pro} (Δ_{1-7}) samples taken at each step of purification were analyzed on a 15% SDS-PAGE gel, and the protein was stained with Coomassie Brilliant Blue. Lane 1, marker of standard proteins; lanes 2 and 3, the cell lysates from the non-induced and IPTG induced *E. coli* BL21 (DE3); lanes 4 and 5, the supernatant and precipitate separated by centrifugation from the cell lysate; lane 6, unabsorbed proteins eluted through the GST column; lane 7, the fractions eluted by reduced glutathione from the GST column.

Fig.3 SDS-PAGE analysis of the fusion protein GST-3CL^{pro} (Δ_{1-7}) and the free 3CL^{pro} (Δ_{1-7})

Lane 1, marker of the standard proteins; Lane 2, the fusion protein prior the cleavage by entrokinase; Lane 3, proteins cleaved by enterokinase for 16 h; Lane 4, the unbound $3CL^{pro}$ (Δ_{1-7}) protein from the GST affinity column.eluted by the reduced glutathione; Lane 5, the unbound protein eluted by the reduced glutathione. $3CL^{pro}$ (Δ_{1-7}) protein from the GST affinity column.

obtained in the case of using the expression plasmid pGEX-M^{pro}. The purified $3CL^{pro}(\Delta_{1-7})$ was dialyzed and lyophilized and stored at -80 °C.

The 3CL^{pro} was obtained by the same way as 3CL^{pro} (Δ_{1-7}) . The purified 3CL^{pro} did not contain extra 5 amino acid residues as obtained in the case of using the expression plasmid pGEX-M^{pro}. SDS-PAGE revealed that one major band of recombinant 3CL^{pro} protein was in the unbond fraction, Data not show.

2.2 The enzyme activity of 3CL protease and its mutant

The fluorogenic substrate was used to measure the protease activity of the recombinant $3CL^{pro}$. The increased fluorescence was monitored as shown in Fig.4. In contrast, under the same conditions, there was no increased fluorescence for the $3CL^{pro}(\Delta_{1-7})$, indicating that $3CL^{pro}(\Delta_{1-7})$ did not have any enzyme activity.

2.3 N-finger peptide partially inhibitory activity on SARS 3CL protease

To determine the inhibitory activity of the N-finger peptide, the concentration of the N-finger peptide was converted to molar units. This assay was completed in a short period of time (120 s) using fluorogenic substrate Dabcyl-KTSAVLQSGFRKME-Edans on a fluorescence spectrophotometer.

Fig.5 shows that N-finger peptide exhibits partially competitive inhibitory effect on SARS 3CL protease by continuous fluorescence-based assay.

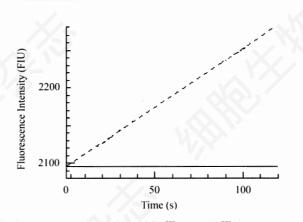


Fig.4 The enzyme activity of $3CL^{pro}$ and $3CL^{pro}(\Delta_{1-7})$ measured on fluorogenic substrate

The enzymatic reaction was carried out at 37 °C in 20 mmol/L Bistris (pH 7.0) monitored on fluorescence spectrophotometer. Both the final concentration of 3CLpro and 3CLpro(Δ_{1-7}) were 34 nmol/L, and the concentration of fluorogenic substrate was 480 nmol/L. EM: 538 nmol/L, EX: 355 nmol/L. The dotted and black lines indicate the activities of 3CLpro and 3CLpro(Δ_{1-7}), respectively.

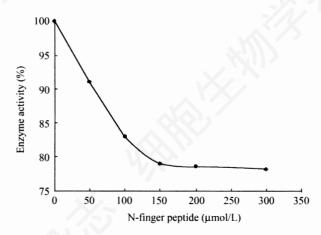


Fig.5 Inhibitory action of N-finger peptide on $3CL^{pro}$ activity The inhibitory effect of N-finger was measured at 37 °C in 20 mmol/L Bis-tris (pH 7.0), 2 mmol/L DDT and monitored on fluorescence spectrophotometer. The final concentrations of $3CL^{pro}$ and fluorogenic subsrate were 34 nmol/L and 480 nmol/L, respectively. The concentrations of N-finger peptide ranged from 50 µmol/L to 300 µmol/L. The $3CL^{pro}$ was incubated for 15 min at 37 °C with the N-finger peptide prior to adding substrate to the desired final concentration. EM: 538 nm, EX: 355 nm.

3 Discussion

The structure of the 3CL^{pro} indicated that the active enzyme is in the form of dimer. The interaction between the domains III of two promoters stabilizes the formation of dimer^[11]. The residues 1–7 of one monomer insert between the domain II and III of the other^[10] and thus it may be critically involved in stabilizing the conformation of the enzyme active site. As expected, mutant deleted the N-finger peptide was not active under the same conditions as the wild type did. The result is similar to that the mutant $M^{pro}(\Delta_{1-7})$ of TGEV Mpro show only 0.3% activity against the native^[12]. The result implies that the N-finger fragment is an important element of 3CL^{pro}. We also synthesized the N-finger peptide as above, and the hepta-peptide show partially competitive inhibitory action on the 3CL^{pro}. The free hepta-peptide, due to its small size, may easily get access to the Nterminal domain of the 3CL^{pro}, competing with the Nterminal 1-7 residues in its native structure. Since the competitor exists in large quantity, the dynamic balance between the competitors and the native amino acid residues would greatly favor the hepta-peptide. The free hepta-peptide interact with this N-terminal pocket through hydrogen bond and/or salt bond in similar way as the native residues and thus disturbs the conformation of the active site. The hepta-peptide may be effective drug against SARS virus after being optimized.

Acknowledgements We thank Prof. Zhi-He Rao for providing plasmid pGEX-Mpro and Prof. Po-Huang Liang for providing fluorogenic substrate. We thank Prof. Cheng-Wu Chi, Da-Fu Cui, You-Shang Zhang for discussion and advice.

References

- [1] Peiris JS et al. N Engl J Med, 2003, 349: 2431
- [2] Zhao Z et al. J Med Microbiol, 2003, 52: 715
- [3] Ksiazek TG et al. N Engl J Med, 2003, 348: 1953
- [4] Rota PA et al. Science, 2003, 300: 1394
- [5] Marra MA et al. Science, 2003, 300: 1399
- [6] Guan Y et al. Science, 2003, 302: 276
- [7] Lai MM et al. Adv Virus Res, 1997, 48: 1
- [8] Thiel V et al. J Gen Virol, 2003, 84: 2305
- [9] Ziebuhr J et al. J Gen Virol, 2000, 81: 853
- [10] Yang H et al. Proc Natl Acad Sci USA, 2003, 100: 13190
- [11] Shi J et al. J Biol Chem, 2004, 279: 24765
- [12] Anand K et al. EMBO J, 2002, 21: 3213
- [13] Wu CY et al. Proc Natl Acad Sci USA, 2004, 101: 10012
- [14] Kuo CJ et al. Biochem Biophys Res Commun, 2004, 318: 862
 (Erratum in: Biochem Biophys Res Commun, 2004, 320: 623)
- [15] King DS et al. Int J Pept Protein Res, 1990, 36: 255

SARS 冠状病毒蛋白酶 3CL^{pro} N-finger 多肽是酶活性所必需

张笋华1,2* 姬明放3 邵晓霞2

(¹ 华东师范大学生命科学学院生物系,上海 200062;² 同济大学蛋白质研究所,上海 200092; ³ 神隆(昆山)生化科技有限公司,昆山 215300)

摘要 构建了 SARS 冠状病毒主要蛋白酶 3CL^{pro} 及其缺失 N 端七肽即 N-finger 的突变体 3CL^{pro}(Δ₁₋₇)融合 表达质粒,并于大肠杆菌表达系统中表达。得到的融合蛋白经肠激酶酶切,亲和层析,最终得到纯化的 3CL^{pro} 及其突变体 3CL^{pro}(Δ₁₋₇)。酶活性实验显示,去除 N-finger 多肽的突变体 3CL^{pro}(Δ₁₋₇)丧失了 3CL^{pro} 所具有的对含有 其自动水解位点的荧光底物的水解活性,表明处于非酶活性中心的 N-finger 多肽是酶活性所必需的。利用固 相合成法,进一步合成了 N-finger 七肽。酶抑制实验表明 N-finger 七肽表现了对 3CL^{pro} 部分竞争抑制活性。

关键词 SARS 冠状病毒; 3CL^{pro} 蛋白酶; N-finger 多肽

收稿日期: 2005-04-09 接受日期: 2005-07-14 国家重点基础研究发展规划项目(973 计划)(No.2003CB514107) * 通讯作者。Tel: 021-65988805, Fax: 021-65988403, E-mail: zhangsh0108@126.com