人源性神经营养素 -6 对体外培养海马神经元 存活的促进作用

张承武 曹丽丽1 胡火珍1 郑 煜*

(四川大学华西基础医学与法医学院生理学教研室,成都 610041; 1四川大学生命科学学院生物学教研室,成都 610041)

摘要 分离出一周 SD 乳鼠海马组织,进行离体海马细胞培养;在培养基中加入神经营养素-6成熟肽片段,通过神经元特异性烯醇化酶免疫组化染色,计数存活海马神经元数量,与对照组比较,观察神经营养素-6对神经元存活的促进作用。结果显示,神经营养素-6实验组海马神经元存活数目显著高于对照组。表明人源性神经营养素-6可以促进体外培养神经元的存活。

关键词 神经营养素-6;海马神经元;存活

神经营养素(neurotrophin, NT)是一类由神经 组织或其靶组织产生的小分子蛋白质,它们在促进 神经元的发生、分化、存活、对抗神经元的凋亡、 保护并修复发生病变或受损伤的神经元的过程中具 有重要的作用[1,2]。神经营养素-6(neurotrophin-6, NT-6)是该家族成员之一。1992年,Berkemerier等[3] 首次报道了位于人19号染色体上的NT-6基因。随 后, 其他研究人员对硬骨鱼的 NT-6 基因进行了克 隆和表达,发现硬骨鱼的NT-6具有NT家族成员所 共有的信号肽和保守氨基酸序列, 而且能促进鸡背 根神经节细胞的存活、诱导轴突的定向生长[4,5]。在 前一阶段的工作中,我们对人源性 NT-6 cDNA 进 行了克隆和表达,并通过生物信息学的方法分析了 NT-6 的结构特性,发现人源性 NT-6 在氨基酸序列 以及三级结构上均与该家族的其他成员具有较高的 同源性和相似性[6]。为了深入认识人源性 NT-6 的神 经生物学功能, 在本研究中, 我们以体外培养的海 马神经元为标本,通过神经元特异性烯醇化酶 (neuron-specific enolase, NSE) 免疫组化染色,观察 人源性NT-6对离体培养的海马神经元是否具有营养 作用。

1 材料与方法

1.1 材料

出生后一周 SD 乳鼠(用于取海马组织),由四川大学华西实验动物中心提供。人源性 NT-6 成熟

肽,由本实验组制备; DMEM 由 Sigma 公司生产; 兔抗大鼠神经元特异性烯醇化酶单克隆抗体、即用 型 SABC 反应试剂盒、DAB 显色试剂盒购自博士德 生物公司;其余试剂均为国产或进口分装分析纯。

1.2 海马神经元的培养

无菌条件下取出乳鼠海马组织, 剪碎后置于 0.125% 的胰蛋白酶中, 37 ℃消化 10 min, 用含有 10% 胎牛血清的 DMEM 培养基终止消化后,吸管反 复吹打制成细胞悬液,200目不锈钢筛网过滤;调 节细胞浓度为5×105个/ml,移入6孔板,6孔板 中置有经多聚赖氨酸处理的盖玻片,将6孔板放置 于充有5% CO, 培养箱中进行培养。次日加入细胞 分裂抑制剂阿糖胞苷(3 μg/ml),抑制非神经元细胞 的分裂,两天后更换新鲜培养液。更换培养基时, 将4个6孔板培养的神经元分为A、B两组,每组 各用两个培养板。其中 A 组的培养液为含 10% 胎牛 血清、1% 谷氨酰胺的 DMEM 培养基; B组的培养 液为在 A 组基础上加入终浓度 100 ng/ml 的人源性 NT-6成熟肽片段。A组为对照组,B组为实验组。 每3天换液1次,每次更新一半培养液。培养过程 中, 分别于第3、6、9、12、15 和18 天, 每 组各取两张细胞爬片,进行 NSE 免疫组化染色。

1.3 海马神经元的免疫组化染色

收稿日期: 2003-11-06 接受日期: 2004-04-19

^{*} 通讯作者。 Tel: 028-85501277, Fax: 028-85503204, E-mail: yzheng@wcums.edu.cn

细胞爬片经 0.01 mol/L PBS 漂洗后,于 4% 多聚甲醛室温固定 15 min; PBS 漂洗 3 次,每次 5 min,加新鲜配制的 0.3% 过氧化氢,室温反应 30 min,以耗竭内源性过氧化物酶; PBS 漂洗 3 次,每次 5 min; 正常血清室温封闭处理 30 min 后,滴加 1:200 兔抗鼠 NSE,4 ℃反应过夜,PBS 漂洗 3 次,每次 5 min; 加入生物素化羊抗兔 IgG 37 ℃放置 20 min,PBS 漂洗 3 次,每次 5 min; 为AB 室温显色,镜下观察控制反应时间,PBS 漂洗 2 次终止反应;晾干后脱水、透明、封片。用 PBS 代替兔抗鼠 NSE,作为阴性对照,其余操作步骤不变。

1.4 海马神经元计数及统计学处理

倒置相差显微镜(\times 200)下计数 NSE 阳性细胞,每个细胞爬片观察 25 个视野。随机计数 500个细胞,计算 NSE 阳性细胞百分率。对每组爬片所得到的 NSE 阳性细胞数用算术平均数土标准差表示,采用 SPSS 分析软件,通过配对 t 检验,对 A、B 两组结果进行统计比较,P<0.05 为有显著性差异。

2 结果

经倒置相差显微镜下计数,在培养时间相同的情况下,加NT-6成熟肽实验组与对照组相比,神经元的数量占细胞总数的90%以上,神经元形态也无明显差异。在培养第3天,两组神经元存活数目无明显差异,但以后各时间点实验组存活的神经元数目显著多于对照组(P<0.05)。结果见图1和图2。

3 讨论

海马是中枢神经系统中调节情绪、学习和记忆 的关键部位,而且在结构上,与其周围组织分界清 楚,神经元所占比例较高。因此,体外培养海马细胞是相关神经系统研究的常用标本^[7]。神经元特异性烯醇化酶 (NSE) 是中枢神经元的标志物之一,主要位于神经元胞浆中,有时也会在突起中表达。可以通过 NSE 免疫组化染色,来反映培养神经元的数目和存活情况。但由于 NSE 在突起中表达较少,所以,本研究中未对神经元突起的数目和长度进行分析。

NT不仅是神经元受损害或病变时保护其存活并促进其再生的必须因子,同时也是神经细胞发生、存活、分化的依赖因子。它主要通过与细胞表面的高亲和力受体——由原癌基因 trk 家族编码的酪氨酸蛋白激酶结合,引起细胞内信号转导通路活动的变化,发挥其促进神经元分化、轴突生长和神经再生的作用^[8]。本研究以体外培养海马神经元为标本,观察了人源性 NT-6 对离体培养的海马神经元的营养作用。

我们发现,与对照组相比,在培养时间相同的情况下,在加入人源性 NT-6 片段的培养基中,存活海马神经元的数目显著高于对照组,表明人源性 NT-6 可以促进体外培养神经细胞的存活。Nitta

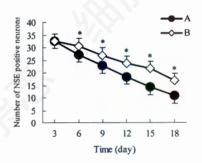
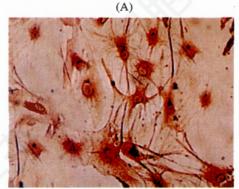



Fig. 1 Comparison of the number of NSE positive hippocampal neurons at different stage of culture between control group (A) and NT-6 group (B)

*P<0.05 vs control.

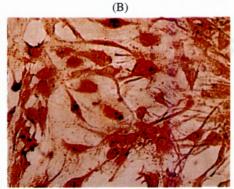


Fig. 2 Pictures of NSE positive hippocampal neurons cultured for 12 days of control group (A) and NT-6 group (B) (×200)

等^[9]报道了NT家族成员脑源性神经营养因子(BDNF)可以对抗由于施加肾上腺皮质激素引起的海马神经元死亡。陈秀青等^[10]报道了神经营养因子中的睫状神经营养因子(CNTF)也可以对抗烧伤大鼠血清引起的培养海马神经元的毒害作用,提高它们的存活率。以上的研究报道与我们的实验结果是相一致的。本研究从生物功能方面证明了人源性NT-6的家族特性,这将会增加人们对NT这一类重要小分子蛋白质的认识。

参考文献 (References)

- [1] 韩济生。*神经科学原理*,第二版,北京:北京医科大学出版 社,2000,1020
- [2] Lewin GR et al. Annu Rev Neurosci, 1996, 19: 289
- [3] Berkemeier LR et al. J Somat Cell Mol, 1992, 18: 233
- [4] Gotz R et al. Nature, 1994, 372: 266
- [5] Li X et al. Biochem J, 1997, 324: 461
- [6] 张承武等。中华医学遗传学杂志, 2002, 19: 475
- [7] 薛庆善等。解剖科学进展, 1996, 2: 349
- [8] Chao MV. Nat Rev Neurosci, 2003, 4: 299
- [9] Nitta A et al. J Neurosci Res, 1999, 57: 227
- [10] 陈秀清等。细胞生物学杂志, 2000, 22: 43

Promotive Effect of Human-derived Neurotrophin-6 on the Survival of Cultured Hippocampal Neurons

Cheng-Wu Zhang, Li-Li Cao¹, Huo-Zhen Hu¹, Yu Zheng*

(Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China;

1Department of Biology, School of Life Sciences, Sichuan University, Chengdu 610041, China)

Abstract The hippocampus of P7 SD rat was isolated. The hippocampal neurons were cultured with the culture medium added mature peptide of human-derived neurotrophin-6. The surviving hippocampal neurons were counted at different time of culture after neuron-specific enolase immunohistochemical staining. It was shown that the number of surviving hippocampal neurons in the experimental group of neurotrophin-6 was significantly increased. This study indicated that the human-derived neurotrophin-6 could enhance the survival of the cultured neurons, suggesting its nutritious and protective action on the nervous system.

Key words neurotrophin-6; hippocampal neuron; survival

Received: November 6, 2003 Accepted: April 19, 2004

^{*}Corresponding author. Tel: 86-28-85501277, Fax: 86-28-85503204, E-mail: yzheng@wcums.edu.cn