技术与方法

TRPV2条件性基因剔除小鼠的建立及其基本表型分析

王瑶莉¹ 张梦杰^{1*} Wolfgang Schwarz³ 蔡 蕾² 匡 颖² 费 俭^{1,2} (¹同济大学生命科学与技术学院,上海 200092; ²上海南方模式生物研究中心,上海 201203; ³上海针灸经络研究中心,上海 201203)

摘要 *TRPV2*是瞬时感受器离子通道蛋白亚家族成员之一,主要分布在感受伤害性热痛刺激和机械刺激的有髓Aδ神经和少部分C神经纤维中,在机体的热痛感觉、机械刺激感觉过程中发挥着重要的作用。此外,该基因在脑和多种非神经组织中也有表达,参与维持体内Ca²⁺、Mg²⁺的离子平衡,暗示了其功能的多样性^[1]。该研究建立了*TRPV2*基因条件性剔除小鼠模型,并研究了*TRPV2*基因全身性剔除小鼠在出生率、体重、血压、学习记忆、运动协调能力等方面的表型变化,结果显示,与野生型相比, 纯合突变小鼠的出生率明显偏低, 但成年雄鼠在上述指标方面并无显著差异。

关键词 TRPV2;条件性基因敲除;表型分析;发育;体重;行为

Generation and Phenotype Analyses of TRPV2 Conditional Knockout Mice

Wang Yaoli¹, Zhang Mengjie^{1*}, Wolfgang Schwarz³, Cai Lei², Kuang Ying², Fei Jian^{1,2}

(¹School of Life Science and Technology, Tongji University, Shanghai 200092, China; ²Shanghai Research Center for Model Organisms, Shanghai 201203, China; ³Shanghai Research Center for Acupuncture & Meridian, Shanghai 201203, China)

Abstract *TRPV2*, one member of the TRP cationic channels family, mostly distributes in myelinated Aδ neurons and C fiber neurons. It was considered to play an important role in the mechanical and noxious heat sensation. *TRPV2* was also detected in many non-neuronal tissues which maintained the ionic equilibrium of principal Ca^{2+} and Mg^{2+} and indicated its various functions *in vivo*. For further *TRPV2* functional studies, *TRPV2* conditional knockout mouse strain was constructed by using Cre-loxP method in our lab. Several basic phenotype analyses were conducted in the *TRPV2* knockout mice. The results showed there were no differences in the bodyweight, blood pressure, study, memory and motor coordination between *TRPV2* knockout mice and WT mice while the birth rate was lower in KO mice.

Key words *TRPV2*; conditional gene knock out; phenotype analysis; development; body weight; behavior

感受外界环境变化的能力对于生物体来说是相 当重要的。哺乳动物中,外界刺激的传入依赖于表 皮上的一些特异的蛋白,其中位于细胞膜上的非选

收稿日期: 2012-11-12 接受日期: 2013-01-07 *通讯作者。Tel: 021-65986853, E-mail: cherry5652@tongji.edu.en

au mi Fal * ref. 021-0390035, E-mail: cherry5052@tongji.educh Received: November 12, 2012 Accepted: January 7, 2013 *Corresponding author. Tel: +86-21-65986853, E-mail: cherry5652@tongji.edu.cn 网络出版时间: 2013-03-28 17:06

URL: http://www.cnki.net/kcms/detail/31.2035.Q.20130328.1706.002.html

择性阳离子通道蛋白,也称为瞬时感受器离子通道 蛋白家族(transient receptor potential ion channel proteins, TRPs)发挥了重要作用^[2-4]。TRP通道分为7个亚 家族,包括:TRPC、TRPV、TRPM、TRPP、TRPN、 TRPA以及TRPML^[5-7]。TRP通道在温度感受、机械 刺激、味觉和钙离子的吸收等方面发挥着重要的作 用^[8]。作为TRPV亚家族成员之一的TRPV2,主要在感 觉神经元,如:脊背根神经节中表达,但在非感觉功能

的组织中也能检测到,如:消化道和前列腺^[9-10]。在非 神经元细胞中除了温度,其他刺激也能激活TRPV2, 如趋化肽fMetLeuPhe^[11]、生长因子、机械或渗透压 刺激可通过PI3K通路^[12]或其他通路诱导TRPV2蛋白 动态地在细胞膜上的分布[13-15]。2-氨基乙酯二苯基 硼酸(2-aminoethoxydiphenyl borate, 2-APB)^[16]以及伤 害性热刺激(>52 °C)能够激活小鼠和大鼠的TRPV2 通道。一些内源性分子,如:膜脂质磷脂酰肌醇4,5-二磷酸(PIP2)和溶血磷脂素类(LPC和LPI)等脂肪酸 衍生物也可激活该通道[17-19]。TRPV2基因剔除小鼠 已有文章发表[20],并发现突变小鼠在免疫功能方面 出现异常,但未发现影响痛觉。由于TRPV2分布广 泛,其在不同组织细胞中可能扮演不同的角色,同 时该家族成员较多,容易发生功能的代偿,因此为 进一步研究TRPV2的功能,在本研究中我们构建了 TRPV2条件性基因剔除小鼠,并证明TRPV2基因可 以在体内被重组酶Cre切除。这项工作为TRPV2的 研究提供了一种重要的动物模型。此外,我们还对 TRPV2基因剔除小鼠的一般表型进行了初步研究。

1 材料与方法

1.1 试剂和仪器

2×Taq PCR MasterMix、Quantscript RT Kit购 自Tiangen公司; VRL-1(H-105):sc-30155和β-Actin(N-21):sc-130656购自Santa Cruz公司; Trans2K Plus DNA Marker购自北京全氏金生物技术有限公司; TRIzol Reagent购自Invitrogen公司; 其余常用化学试剂购自 国药集团化学试剂有限公司。PCR仪购自Eppendorf 公司; BP-98A智能无创血压计购自Softron公司; 行为 学分析系统购自Kinder Scientific Motor Monitor公司。

1.2 实验动物

SPF级4~8周龄C57BL/B6小鼠由上海斯莱克 实验动物有限责任公司提供。FVB/N-Tg(EIIa-cre) C5379Lmgd/J小鼠引种自The Jackson Laboratory。 基因剔除小鼠由我们实验室自己建立,小鼠饲养在 恒温(21~22 °C)、具备空气过滤的SPF级动物房内, 每隔12 h光暗循环,每日小鼠自由进食标准鼠粮及 饮水。本文的动物实验方案获得上海南方模式生物 研究中心实验动物使用与看护委员会(IACUC)的批 准, IACUC号: 20120006。

用于行为学的小鼠为年龄和体重相当的成年 小鼠(12~18周龄),每只小鼠仅用于单次实验。实验 前24 h将小鼠转移至行为测试专用房间,使之适应 新的环境。实验过程中观测者不知小鼠基因型,以 免影响实验结果的客观性。

1.3 实验方法

1.3.1 TRPV2条件性基因敲除小鼠的构建 条件性 基因剔除小鼠的构建利用Cre-loxP系统^[20],打靶载体 构建采用ET克隆方法^[21],构建的质粒图谱如图1A, 打靶载体设计如图1B。该设计在TRPV2基因的第 4外显子两侧内含子区域各放置一个同向的loxP位 点。经过Cre酶重组后,外显子4被剔除并造成后续 序列移码,致使TRPV2功能缺失。

将35 μg Not I线性化的TRPV2-CKO DNA加入 到含有1×10⁷的129/SCR012小鼠ES细胞的电击杯中 进行电穿孔操作,电压240 V,电容 500 μF,电击后 细胞在300 μg/mL G418和2 μmol/L GanC培养液中 筛选培养8天,挑取抗性克隆,并提取DNA。用PCR 方法筛选阳性克隆,引物设计如图1B3所示,引物序 列如下: P1: 5'-AGG CAC TTT CAT CCA GTA CCA AG-3', P2: 5'-GGC CTA CCC GCT TCC ATT GCT C-3'; P3: 5'-CCG TGC CTT CCT TGA CCC TGG-3', P4: 5'-ACC TTC CTT GGC AGC CAA CTT CAG-3'。

PCR产物经DNA测序进一步证实同源重组 的发生。鉴定为阳性的ES细胞采用显微注射到 C57BL/6J小鼠囊胚腔中,注射后胚胎移植到假孕 小鼠输卵管中,等待嵌合小鼠出生。嵌合子小鼠依 据毛色选择,将毛色嵌合率大于50%的成熟雄鼠与 C57BL/6J雌鼠进行交配,保留灰色后代小鼠,提取 其尾组织基因组DNA,进行PCR鉴定,获得TRPV2基 因的flox杂合小鼠(TRPV2^{flox/+})。采用三引物鉴定策 略: P5: 5'-GTT TCT TCT TCT CAC CAG GAG CTC T-3'; P6: 5'-TCT CCT GAA ACT GCT TTT ACA GAT AGC-3'; P7: 5'-CCT GCC CAT TCG ACC ACC-3'. PCR反应条件: 94 °C 5 min; 94 °C 30 s, 58 °C 30 s, 72°C 90 s, 30个循环; 72 °C 10 min。TRPV2^{flox/+}小鼠 理论上有三个条带:在野生型上有P5+P6扩增的472 bp; flox基因位点由于有neo的插入, P5+P6在理论上可扩 增出2 490 bp的条带,但在本案中没有观测到,可能 是由于延伸时间不够长或有小片段野生型条带的竞 争; 另外在flox基因上会有P6+P7扩增的849 bp; 野生 型小鼠只有一条472 bp的条带。

为检验TRPV2的flox区域是否能够被Cre酶进行 重组,将TRPV2^{flox+}小鼠与全身性表达的EIIA-Cre的

A: 打靶质粒图谱; B: 基因打靶示意图, 1为TRPV2基因组打靶区域结构; 2为打靶载体结构; 3为打靶后TRPV2基因组结构; 4为Cre重组后TRPV2 基因组结构; 灰色柱子为外显子; UHA: 上游同源臂; DHA: 下游同源臂; loxP: Cre重组位点。

A: the plasmid map of *TRPV2*-CKO targeting vector; B: from the top, *TRPV2* genomic locus, targeting construct, targeted *TRPV2* allele, and Crerecombined *TRPV2* allele; gray bars represent exons; UHA: upstream homology arm; DHA: downstream homology arm; loxP: Cre recombination site. 图1 *TRPV2*条件性基因剔除小鼠打靶载体构建策略及质粒图谱

Fig.1 The plasmid map and schematic of *TRPV2* KO strategy

小鼠杂交,后代中可获得*TRPV2^{flox/+,EIIA-Cre*小鼠,将该 基因型的雄性小鼠和C57BL/6J雌鼠合笼,检测后代 中是否有*TRPV2*基因的第四外显子被重组剔除的小 鼠,*TRPV2^{-/+,EIIA-Cre}和TRPV2^{-/+}*,筛选并留下*TRPV2^{-/+}*的小鼠。为了简化鉴定方法,采用三引物鉴定策略, 如图1B3所示,引物Pa: 5'-GGA TGC GGT GGG CTC TAT GG-3'; Pb: 5'-AAG GAT CAG ATC TCC TGA AAC TGC-3'; Pc: 5'-TTG ACC GTG ACC GAC TCT} TCA-3'。野生型小鼠PCR条带应为单一条带273 bp, 目的基因剔除小鼠PCR条带为211 bp,杂合子小鼠 为273 bp和211 bp两条条带。PCR反应条件: 94 °C 5 min; 94 °C 30 s, 58 °C 30 s, 72 °C 35 s, 34个循环; 72 °C 5 min。

1.3.2 RT-PCR检测*TRPV2*的表达 将*TRPV2*全身 剔除的纯合子(KO)、杂合子(Heter)和野生型(WT) 对照小鼠脱椎处死后,迅速取选定组织50~100 mg加 入1 mL Trizol试剂进行匀浆, 按文献及供应商Invitrogen推荐的方法提取RNA。反转录1 μg RNA样 品, 按供应商TaKaRa推荐方法分别加入Oligo(dT)、 5×MMLV Buffer、dNTP、RNase Inhibitor、RTase M-MLV等试剂, 42 °C保温1 h, 70 °C保温15 min, 冰 上冷却后即得cDNA。

为验证4号外显子缺失,在剔除区上设计两对 引物: 第一对引物F1: 5'-AGC AAG TAC CTC ACT GAC TCG GCA TAC AC-3', R1: 5'-GGT AGG TCA CCA CAT CCC ACT GCT TG-3', 分别位于exon4和 exon6上,WT小鼠应有一条带379 bp,KO小鼠没有 条带。第二对引物F2: 5'-CTT GAC TTC AGC CTG AGG GG-3', R2: 5'-GCC TCG GTA GAA CTC ATC GG-3′,分别位于exon2和exon5上。WT小鼠扩增条 带为601 bp, KO小鼠为467 bp, Heter小鼠可同时扩增 出上述两个产物。第三对引物F3: 5'-AGC CAT TCC CTC ATC AAA AG-3'; R3: 5'-AGC CAG CTC ACC CAT ACC-3'(在exon7和exon11上, 未在图1B中标出), 所有基因型小鼠理论上都能扩增出条带。β-actin引 物为F: 5'-CCT GTA TGC CTC TGG TCG TA-3'; R: 5'-CCA TCT CCT GCT CGA AGT CT-3', 扩增条带为 259 bp。PCR反应条件: 94 °C 5 min; 94 °C 30 s, 58 °C 30 s, 72 °C 50 s, 30个循环; 72 °C 10 min。

1.3.3 *TRPV2*基因剔除对小鼠胚胎发育的影响 将 Heter小鼠进行雌雄合笼,统计出生后代中各基因型 的比例。

1.3.4 *TRPV2*基因剔除对出生后小鼠发育及体重的 影响 肉眼观察各基因型组间小鼠在外观及行为 上是否具有明显差异。体重测定固定在每天的同样 时间段内,将待测小鼠轻柔地放置于电子天平称量 盘的容器中,等待片刻至小鼠安定,记录小鼠体重, 结果显示KO小鼠比WT小鼠偏轻,但是未有显著性 差异。

1.3.5 *TRPV2*基因剔除对小鼠外周血象及血液生化 的影响 取成年KO、Heter和WT雌鼠及雄鼠各3只, 采用眼眶取血方式采血,进行血常规和血液中Ca²⁺、 葡萄糖、白蛋白(ALB)、C反应蛋白(CRP)浓度的测 定。

1.3.6 *TRPV2*基因剔除对小鼠血压的影响 外周 血压测量时,将小鼠轻轻放在鼠袋中,外面套有保温 袋,保持恒温37°C,然后将感应器置于小鼠的尾根 部,按下开始键,血压仪将自动检测小鼠尾部的血 流,当判定血压的状态可以进行测量时,自动开始测量,数据包括心拍数HR、收缩期血压SBP、平均压MBP、扩张期血压DBP。

1.3.7 *TRPV2*基因剔除对小鼠自发运动行为的影响 将小鼠放入41 cm×41 cm×38 cm的行为测试箱内, 自由运动15 min。箱子底部有红外线探头定位小 鼠活动情况,中央有8个探头组成正方形区域,其余 划分外周区,数据由Kinder Scientific Motor Monitor STD7×15分析系统记录计算分析各项行为指标。

1.3.8 *TRPV2*基因剔除对小鼠运动协调能力的影 测试用爬杆杆长50 cm, 直径2 cm, 垂直竖立 于实验桌上。测试前, 先引导小鼠自杆顶爬下至桌 面两次, 测试时将小鼠头朝上置于杆顶端, 开始计 时, 小鼠从开始运动到完全转为头向下的时间为 调头时间; 从头向下开始至沿杆自然爬下到杆底 部的时间为爬下时间。同时观察小鼠在下行过程 中的行为。

1.3.9 *TRPV2*基因剔除对小鼠探索行为的影响 将小鼠放在27.3 cm×27.3 cm×20.3 cm的探洞箱内,箱内用红外对小鼠进行定位,使其自由探索30 min,记录期间小鼠运动和探索情况,数据使用activity monitor采集。

1.3.10 TRPV2基因剔除对小鼠新物体识别能力的影 响 实验分适应期和测试期,首先将单个小鼠放在 一个封闭的行为测试箱内(24 cm×27 cm×30 cm)适 应5 min,相同时间段连续适应2天,此时在箱子中放 入两个相同的物体,在此阶段记录小鼠的自发运动 及对两个相同物体的总探究时间;第三天进行测试, 将其中一个物体换作另一个形状不同的物体,再让 小鼠自由探索5 min,并记录小鼠对两个不同物体的探 索时间。小鼠鼻子距被识别物体的距离不超过2 cm 或用鼻子接触到被识别物体为探究行为,趴在被识 别物体上或只是在被识别物体附近走动不认为是探 究行为,记忆能力评价的标准为探索新物体的时间 与总时间的比率。

1.4 数据处理及统计学分析

实验数据表达为mean±S.E.M.。利用Origin7.0 统计学软件分析数据的统计学意义。各组之间的 统计学差异分析选用方差分析(one-way ANOVA)。 P<0.01为有显著性差异。文中分别用WT、Heter和 KO表示野生型、杂合子及纯合子*TRPV2*基因剔除 小鼠。

2 结果

2.1 TRPV2条件性基因剔除小鼠的获得

采用PCR方法共筛选到双侧臂均发生正确同 源重组的ES细胞克隆3个。PCR产物经DNA序列测 定进一步证实同源重组的正确性,电泳结果如图2A 所示。阳性ES细胞囊胚注射获得雄性嵌合小鼠,成 年后和雌性C57BL/B6小鼠交配,从后代中筛选得 到杂合的TRPV2的flox小鼠(TRPV2^{flox+}),PCR检测 结果见图2B。将flox小鼠和EII-Cre小鼠交配,获得 TRPV2^{flox+,EIIA-Cre},成年后将其和野生型C57BL/B6小 鼠交配,在后代中筛选获得TRPV2基因完全剔除杂 合子小鼠,经杂合子小鼠交配后,得到TRPV2基因 剔除的纯合子小鼠,基因型鉴定如图2C所示。RT-PCR的结果表明,TRPV2基因在小鼠的多个器官中 表达,基因剔除后外显子4在转录的mRNA中缺失 (图3A和3B),将小鼠脾脏RT-PCR的467 bp目的条带送去测序,和原始序列相对比,证明确实敲除。并且突变mRNA含量明显减少,符合基因转录本发生移码突变出现提前终止密码子而导致的mRNA不稳定易降解的现象,即无义介导的mRNA降解(nonsense-mediated mRNA decay, NMD)(图3C)。

2.2 TRPV2基因剔除对小鼠胚胎发育和生长的 影响

表1为TRPV2基因剔除雌雄杂合子交配的后代 基因型统计,在总共观测的499个新生小鼠中,KO 有59只,Heter有303只,WT有137只;其中雌鼠248 只:KO为22只,Heter为154只,WT为72只;雄鼠251 只:KO为37只,Heter为149只,WT为65只。雌鼠和 雄鼠出生率之间没有显著性差异,而对实际出生的 总KO,Heter和WT小鼠个数与孟德尔定律理论该出

A: 5′端和3′端TRPV2基因打靶阳性克隆电泳分析图。泳道1、2为3′端鉴定结果,泳道3、4为5′端鉴定结果,泳道5为空白对照; B: TRPV2 flox小鼠 基因型鉴定图。泳道WT表示野生型,泳道flox表示flox小鼠; C: TRPV2基因剔除小鼠鉴定图。泳道WT表示野生型,泳道Heter表示基因剔除杂 合子小鼠,KO表示基因剔除纯合子小鼠。泳道M为分子量标记。

A: PCR analysis of the *TRPV2* targeted ES cells on 3' arm (lane 1,2) and 5' arm (lane 3,4), lane 5 is negative control; M: trans2K plus DNA marker; B: PCR analysis of the flox mice; C: PCR analysis of WT, Heter and KO mice.

A: 引物F1和R1(分别位于exon4和exon6)RT-PCR检测小鼠脾脏中TRPV2 mRNA表达; B: 引物F2和R2(分别位于exon2和exon5)RT-PCR检测小鼠 脾脏中TRPV2 mRNA表达; C: 引物F3和R3(分别位于exon7和exon11)RT-PCR检测小鼠皮肤、脾脏和胸腺中TRPV2的表达; Actin: 内参; M: DNA marker。

A: the expression of *TRPV2* in mice spleen was detected by RT-PCR(F1 and R1 respectively, located on exon4 and exon6); B: the expression of *TRPV2* in mice spleen was detected by RT-PCR(F2 and R2 respectively located on exon2 and exon5); C: the expression of *TRPV2* in mice skin, thymus and spleen by RT-PCR. Actin was served as an internal standard. M: trans2K plus DNA marker.

图3 RT-PCR检测小鼠组织中TRPV2的表达

Fig.3 RT-PCR analysis of the expression of TRPV2 in the mice tissues

生的个数进行卡方检验(表1), χ²为47.328 66, P值为 5.28E-11, 远小于0.01, 故实际出生个数与理论该出 生的个数之间有显著性差异, 并且这73笼小鼠共有 后代小鼠499只, 所以出生总数没有异常, 经过观察, 鲜有发现新生小鼠在哺乳期死亡, 所以推断TRPV2

Fig.1 The birth statics table of mouse			
	纯合子	杂合子	野生型
	KO	Heter	WT
Number of virtual birth	59	303	137
Number of theoretical birth	124.75	249.5	124.75

表1 小鼠出生数量统计表

纯合小鼠可能在母鼠围产期时致死,该基因可能影响小鼠的胚胎发育,但还有待我们进一步的实验来验证。对成年小鼠的体重检测表明,KO小鼠的体重偏轻,但没有显著差异(图4)。血常规(WBC、RBC、HGB、HCT、MCV、MCH、MCHC、PLT、LYM%,OTHR%、EO%、LYM#(#表示绝对值)、OTHR#、EO#、RDW-SD、RDW-CV、PDW、MPV、P-LCR)和血液生化检测(Ca²⁺、葡萄糖、C反应蛋白和白蛋白)未发现KO小鼠和WT小鼠有显著区别(数据未显示)。心律和血压测定表明,和WT小鼠相比,*TRPV2*基因剔除不影响小鼠的心律和血压(图5)。

A: 雌鼠体重变化曲线(KO, *n*=11; Heter, *n*=11; WT, *n*=11); B: 雄鼠体重变化曲线(WT, *n*=11; KO, *n*=10)。数据表示为均数±标准误。 A: the growth curve of the female mice(KO, *n*=11; Heter, *n*=11;WT, *n*=11); B: the growth curve of the male mice(WT, *n*=11; KO, *n*=10). Values are presented as mean±S.E.M.

图4 小鼠体重变化曲线 Fig.4 The growth curve of the mice

A: 雄鼠心率(WT, n=11; KO, n=10); B: 雄鼠血压(WT, n=11; KO, n=10)。数据表示为均数±标准误。

A: the heart rate in the male mice(WT, n=11; KO, n=10); B: the blood pressure in the male mice (WT, n=11; KO, n=10). Values are presented as mean±S.E.M.

图5 野生型和基因剔除雄鼠心率以及血压图

Fig.5 The heart rate and blood pressure of the male mouse of WT and KO

A: 雄鼠在旷场内活动情况(WT, n=11; KO, n=10); B: 雄鼠在旷场内活动距离(WT, n=11; KO, n=10); C: 雄鼠运动能力检测(WT, n=11; KO, n=10); D: 雄鼠探索能力检测(WT, n=10; KO, n=8); E: 新物体识别能力检测(WT, n=11; KO, n=10)。数据表示为均数±标准误。

A: the number of movements in the open field(WT, n=11; KO, n=10; male); B: the distance in the open field(WT, n=11; KO, n=10; male); C: the ability of motor coordination in pole test(WT, n=11; KO, n=10; male); D: the exploration behavior in hole-board test(WT, n=10; KO, n=8; male); E: the analysis of novel object recognition(WT, n=11; KO, n=10; male). Values are presented as mean±S.E.M.

图6 TRPV2基因剔除雄鼠的行为学实验研究

2.3 TRPV2基因剔除对小鼠行为的影响

旷场运动实验表明和野生型小鼠相比, KO小鼠 的自发运动没有显著差异(图6A和6B)。爬竿实验结 果显示, *TRPV2*的缺失对小鼠运动能力和运动协调 机能没有影响(图6C)。探洞实验和新物体设别实验 均表明, *TRPV2*基因剔除对小鼠的探究行为和学习 记忆能力未造成显著影响(图6D和6E)。

3 讨论

本文报道了条件性TRPV2基因剔除小鼠的构建以及TRPV2全身剔除情况下相关的基础表型分

析。在本研究策略中TRPV2基因的第四外显子被设计为条件敲除,当Cre酶在细胞中表达时,该外显子被切除,并造成后继编码区的移码突变。我们采用 EII-Cre转基因小鼠和条件性TRPV2基因剔除小鼠交配,结果证明TRPV2基因的第四外显子可以被有效 删除,并获得了一种全身性TRPV2基因剔除的小鼠。 PCR结果表明,我们已成功获得TRPV2条件性基因 剔除小鼠,可以被用于后继的科研工作。

我们对实验中获得的全身性TRPV2基因剔除 小鼠进行了一些基础表型分析。研究数据表明, TRPV2基因剔除后对小鼠胚胎发育有一定影响,但 仍有待我们进一步的实验来确定纯合致死原因。在 *TRPV2*基因剔除的雌雄杂合子小鼠交配实验中,新 生小鼠中纯合子基因剔除小鼠的比例显著偏低,这 和文献报道的常规基因剔除实验结果类似^[20],尽管 他们剔除的区域和我们的策略不同。我们的研究还 表明,对于存活的成年基因剔除纯合子小鼠在体重 上偏轻,但在心率、血压、学习认知、运动协调能 力上,与野生型小鼠相比没有显著性差异。

TRPV2在胚胎早期发育过程中,主要分布在感 觉和运动神经元中,在成体中,TRPV2则主要分布于 DRG神经元和脊椎运动神经元^[23]。*TRPV2*被认为和 高温热刺激的感受有关,但最近报道*TRPV2*剔除小 鼠在感受伤害性热刺激和机械刺激上与同窝野生型 小鼠没有显著性差异,暗示*TRPV2*也许并不是感受 热痛和机械刺激所必不可少的^[20]。因此,*TRPV2*的 确切生理功能还有待进一步探索,而我们构建的条 件性基因剔除小鼠为精细化研究*TRPV2*的基因功能 提供了良好的动物模型。

参考文献 (References)

- 隋 峰, 霍海如, 姜廷良, 罗 非, 郭建友. 痛觉感受相关的TRP 离子通道蛋白研究进展. 中国疼痛医学杂志(Sui Feng, Huo Hairu, Jiang Yanliang, Luo Fei, Guo Jianyou. Research development of noticious TRP chanel. Chinese Journal of Pain Medicine) 2009; 15(1): 50-3.
- Clapham DE. TRP channels as cellular sensors. Nature 2003; 426(6966): 517-24.
- 3 Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, *et al.* Molecular basis of infrared detection by snakes. Nature 2010; 464(7291): 1006-11.
- 4 Patapoutian A, Peier AM, Story GM, Viswanath V. ThermoTRP channels and beyond: Mechanisms of temperature sensation. Nat Rev Neurosci 2003; 4(7): 529-39.
- 5 Ferrer-Montiel A, García-Martínez C, Morenilla-Palao C, García-Sanz N, Fernández-Carvajal A, Fernández-Ballester G, *et al.* Molecular architecture of the vanilloid receptor. Insights for drug design. Eur J Biochem 2004; 271(10): 1820-6.
- 6 Alexander SP, Mathie A, Peters JA. Guide to receptors and channels(GRAC), 2nd edition(2007 revision). Br J Pharmacol 2007; 150 Suppl 1: S1-168.
- 7 Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem 2007; 76: 387-417.
- 8 Flockerzi V. An introduction on TRP channels. Handb Exp Pharmacol 2007; 179: 1-19.
- 9 Kowase T, Nakazato Y, Yoko OH, Morikawa A, Kojima I. Immunohistochemical localization of growth factor-regulated channel(GRC) in human tissues. Endocr J 2002; 49(3): 349-55.

- 10 Bang S, Kim KY, Yoo S, Lee SH, Hwang SW. Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci Lett 2007; 425(2): 120-5.
- 11 Nagasawa M, Nakagawa Y, Tanaka S, Kojima I. Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol 2007; 210(3): 692-702.
- 12 Penna A, Juvin V, Chemin J, Compan V, Monet M, Rassendren FA. PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane. Cell Calcium 2006; 39(6): 495-507.
- 13 Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1999; 1(3): 165-70.
- 14 Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M. A novel mechanism of myocyte degeneration involving the Ca²⁺-permeable growth factor-regulated channel. J Cell Biol 2003; 161(5): 957-67.
- 15 Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, *et al.* TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 2003; 93(9): 829-38.
- 16 Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, *et al.* 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 2004; 279(34): 35741-8.
- 17 Flemming PK, Dedman AM, Xu SZ, Li J, Zeng F, Naylor J, *et al.* Sensing of lysophospholipids by TRPC5 calcium channel. J Biol Chem 2006; 281(8): 4977-82.
- 18 Vanden Abeele F, Zholos A, Bidaux G, Shuba Y, Thebault S, Beck B, et al. Ca²⁺-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J Biol Chem 2006; 281(52): 40174-82.
- 19 Monet M, Gkika D, Lehen'kyi V, Pourtier A, Vanden Abeele F, Bidaux G, et al. Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim Biophys Acta 2009; 1793(3): 528-39.
- 20 Park U, Vastani N, Guan Y, Raja SN, Koltzenburg M, Caterina MJ. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci 2011; 31(32): 11425-36.
- 21 Gu H, Zou YR, Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 1993; 73(6): 1155-64.
- 22 杨建岭, 顾淑萍, 陈 臣, 王铸钢, 许 燕, 费 俭. 用Red/ET重组 酶构建基因打靶载体, 生物工程学报(Yang Jianling, Gu Shuping, Chen Chen, Wang Zhugang, Xu Yan, Fei Jian. New option for gene-targeting vector construction Red/ET recombination. Sheng Wu Gong Cheng Xue Bao) 2006; 22(6): 919-24.
- 23 Shibasaki K, Murayama N, Ono K, Ishizaki Y, Tominaga M. TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J Neurosci 2010; 30(13): 4601-12.