小麦高频率分生组织细胞有丝分裂同步化诱导及 分裂周期蛋白质组变化分析

王 炼 尹凤英 段 爽 甘 富 王振英* 彭永康* (天津师范大学生命科学学院/细胞遗传与分子调控天津市重点实验室 天津 300387)

摘要 利用 Hu和 APM 双阻断法可以提高小麦分生组织细胞有丝分裂同步化频率,其中前 期达 20%,中期达 79%,后-末期达 27%。双向电泳分析结果表明,小麦分生组织细胞的有丝分裂 周期蛋白质呈现出明显周期性变化,与间期细胞相比前期中呈现出 5个差异蛋白质斑点,这5个蛋 白质斑点的分子量和等电点分别为 37 kDa/pI 6.6、38 kDa/pI 6.8、34 kDa/pI 7.2、38 kDa/pI 7.5 和 15 kDa/pI 6.9,到了中期,发现有 21 kDa/pI 6.3 的蛋白质斑点存在,而 51 kDa/pI 7.3 和 23 kDa/pI 6. 1 蛋白质斑点消失,分生组织细胞进入后 - 末期分裂期时,又发现有 37 kDa/pI 6.6、51 kDa/pI 7.3、 23 kDa/pI 6.1、43 kDa/pI 6.6 蛋白质出现,蛋白质斑点 21 kDa/pI 6.3 消失。在整个细胞周期运行 中,蛋白质斑点 37 kDa/pI 6.6、51 kDa/pI 7.3、23 kDa/pI 6.1 和 21 kDa/pI 6.3发生了明显的周期性 变化,其中有 2个蛋白斑点经质谱鉴定为 chromosome segregation protein SMC 和 helicase。它们的 功能涉及染色体的形成与分离、DNA 复制与能量代谢。

关键词 同步化;有丝分裂;蛋白质组; MS/MS; 小麦

细胞有丝分裂同步化诱导由于可以得到分裂一 致的细胞群体,便于研究诸如有丝分裂周期、分裂 调控、染色体显微切割和显微克隆及单条染色体基 因文库构建等^[1-7]许多细胞及分子生物学中的基本问 题,因此,一直受到许多研究者的高度重视。比较 细胞有丝分裂周期(间期、前期、中期和后-末期) 中蛋白质的变化,揭示与调控相关蛋白及结构组份, 对了解周期调控生化机理有很重要的意义^[8],但这需 要有充足的间期、前期、中期和后-末期分裂相细 胞,而由于植物有丝分裂细胞的不同步,不能获得不 同分裂期的细胞群体,故需要诱导出高频率的前期及 后-末期同步化分裂细胞。然而,迄今几乎所有植 物材料细胞有丝分裂同步化诱导都是以悬浮细胞系 为材料且大多侧重于中期^[9-11],直接以根尖为材料诱 导细胞分裂同步化是有一定难度的^[12,13]。

本工作中,我们用Hu和APM 2种可以影响细胞 分裂的药物诱导小麦分生组织有丝分裂不同时期高 频率同步化分裂细胞,对分裂细胞从间期→前期、 前期→中期和中期→后-末期时相转换过程中蛋白 质组的变化及可能与周期调控相关的蛋白质作了比 较分析,以期从蛋白质组角度,了解高等植物细胞有 丝分裂周期调控的生化机理,为今后植物细胞有丝分 裂周期调控生化及分子机理的研究提供一些帮助,下 面报道的是我们实验所得的初步结果。

1 材料与方法

1.1 小麦分生组织高频率细胞有丝分裂同步化诱导

1.1.1 中期同步化诱导 小麦(*Triticum aestivum*)野 二燕1号种子由贵州农业大学提供,种子在室温下浸 泡 24 h, 1.25 mmol/L Hu 中处理 16 h~24 h (23 ℃), 蒸 馏水彻底冲洗以除去Hu, 23 ℃下水培3.5 h, 4 μ mol/L APM 中处理 4 h~6 h, 切取经中期同步化诱导的根 尖, 根尖在 70%(V/V)乙醇中固定, 供细胞学观察用, 如用于蛋白质组分析, 则需直接制备各样品。 1.1.2 前期和后 - 末期同步化诱导 利用 Hu 将细 胞阻断在 $G_1 \rightarrow S$ 期, 然后去除 Hu 作用, 恢复生长后 在 1 h~24 h 内连续取材, 检测前期细胞部分同步化

收稿日期: 2010-07-15 接受日期: 2010-10-23

天津市科技计划 (No.10ZCKFNC00200)资助项目

^{*}通讯作者。Tel: 020-23766569, E-mail: wzycell@yahoo.com.cn, pykcell@yahoo.com.cn

的最佳时期。在中期细胞同步化诱导的基础上,去除 APM 作用,在恢复生长后的1h~24h内连续取材,以检测后-末期细胞同步化的最佳时间,制片并测定前期和后-末期细胞同步化的得率。

1.2 细胞学观察

取固定于70% 乙醇中的小麦根尖,用预冷至4℃的蒸馏水彻底冲洗以除去乙醇,然后在60℃下用1 mol/L HCl 酸解根尖 6 min,洗净后浸入 2.5% (M/V) 纤维素酶和果胶酶的混合液(纤维素酶 RS:果胶酶 Y23=1:1,75 mmol/L KCl,7.5 mmol/L EDTA, pH 4.0), 23℃下酶解30 min,洗净根尖并用卡宝品红染色,常规制片,观察细胞周期同步化分裂情况,各组材料所观察的细胞样本数量至少为1000个。

1.3 蛋白质制备和 2-DE 分析

蛋白质制备按照Yan等^[14]方法,将根尖置于液氮 中研磨,研磨的匀浆液悬浮在含有0.07% (W/V)DTT 的 10% 冷丙酮中,-20 ℃下温育1h,然后在3 500g 下离心5 min,碎片悬浮在含有0.07% (W/V) DTT 的 丙酮中,在-20 ℃下温育1h后,1 500g 离心30 min, 这一步骤重复3次。将样品冻干,然后溶解在样品 缓冲夜中(8 mol/L 尿素,35 mmol/L Tris,4% (W/V) CHAPS,1% pH 5~pH 7 Ampholine, 0.4% pH 3~pH 10 Ampholine, 1% (W/V) DTT),实验中测定蛋白质样品 含量参考 Bradford^[15]的方法,并以 BSA 作为标准。

蛋白质的 2-DE 分析参阅 Castro 等^[16]的方法。 利用 pH 3~ pH 10 IPG 胶条,长度为 13 cm,根据 Bio-Rad 产品说明书操作。每个待分析样品取约 60 μg, 并用样品缓冲夜稀释至300 μl,将干胶条在含待测样 品的缓冲液中水化 10 h (300V),使待测蛋白质样品 吸入胶条中。

第一向等电聚焦程序如下:分别在300 V和1000 V 下作用1h,然后将电压调至8000V下作用2h。电 泳结束后胶条在平衡液(60 mmol/L Tris-HCl, pH 6.8, 1% DDT, 1% 甘氨酸, 2% SDS)中平衡20 min。电 泳的第二向参考 laemmli^[17]12.5% SDS-PAGE。将经 过聚焦后的凝胶条放在垂直板状胶的上面,用1%的 内含0.15 mol/L Bis-Tris/0.1 mol/L HCl和0.2% (W/V) SDS 的琼脂糖封胶,并使其聚合。80 V下电泳5h。 其结果经3次重复。采用银染法记录电泳结果。MS 分析胶用 GS-800 考马斯亮蓝染色。色谱扫描记录 图像,用 PDQuest 软件进行凝胶斑点检测、匹配和 差异斑点鉴别,确定对照和处理组之间有差异的蛋白 质斑点,进行质谱分析。

1.4 凝胶消化和 MALDI-TOF MS 分析

从制备胶上切下经鉴别有差别的蛋白质斑点,用 超纯水洗 3 次, 50 mmol/L NH₄HCO₃ 脱色 2 次, 100% 乙腈干燥,用 0.1% TFA 在 50% 乙腈溶液中 37℃消化 过夜,将制备物混匀、冻干。将冻干的制备物溶解 在含有 1% TFA 和 50% 的 5 mg/ml CHCA 中。利用 ABI 4700型(USA)正离子生物质谱仪进行MALDI-TOF MS 分析。以胰蛋白酶自动降解片段为内部标准校 正。通过 MASCOT 软件(http://www.matrixscience. com),在NCBInr绿色植物数据库(Viridiplantae)进行查 询,为了表明新鉴定的蛋白质的可靠性,除个别功能 未能确定的推测蛋白质斑点外,每个被鉴定的蛋白质 序列覆盖率至少达 15%,得分在 35 以上,肽质量数 误差范围为±0.1 Da,未水解酶位点数为1。

2 结果

2.1 利用 Hu 和 APM 诱导小麦根尖分生组织细 胞高频率有丝分裂同步化

我们的实验表明, 当用 1.25 mmol/L Hu 处理小 麦 18 h~24 h 后, 去除 Hu 作用, 恢复生长 10.5 h~11.5 h 后, 小麦根尖前期细胞得率达到 20%(图 1B)。而中 期分裂细胞的诱导则是在 1.25 mmol/L Hu 溶液中, 23 ℃下培养 24 h, 再水培 3.5 h 以解除 Hu 作用后, 再 用 4 µmol/L APM 处理 4 h~6 h 时, 效果较理想, 中期 细胞得率为 79%。另外, 从经同步化后的根尖分生 组织细胞压片检查发现, 此时的中期细胞染色体形 态较好, 染色体缩短、变粗, 分散性较好(图 1C)。

植物细胞有丝分裂后 - 末期同步化的诱导比较 困难, 我们曾经预测, 具有较高频率的中期同步化细 胞在解除 APM 的药物抑制后, 可能会有较多的中期 细胞恢复周期运行进入后-末期, 但实际结果与预测 不符。由 Hu 和 APM 双阻断后同步的中期细胞去除 APM 作用, 转入水培使其恢复生长后, 根尖中, 后 -末期细胞的出现频率很低, 而经 Hu 处理的细胞, 去 除其作用, 水培使根尖恢复正常生长后, 10 h~24 h内 连续取材, 可以检测到较高频率的后 - 末期细胞(图 1D)。这些后 - 末期细胞形态正常, 推测它们中至少 有一部分可能是用 Hu 同步在 G₁→S 期的分裂细胞, 在去除 Hu 的抑制作用后恢复正常生长的结果。Hu 对细胞分裂作了第一次阻断, 使细胞大量累积在G₁→ S 期, 当去除 Hu 作用后, 细胞恢复正常周期运行, 因

图1 小麦根尖分生组织的有丝分裂同步化细胞 (500×)

A: 间期; B: 前期; C: 中期; D: 后-末期。

A: interphase; B: prophase; C: metaphase; D: anaphase-telophase.

此有较多的后 - 末期细胞, 后 - 末期细胞得率达到 27%。这样看来, Hu 在后 - 末期细胞的同步化方面 也起着一定的作用。

2.2 小麦分生组织细胞有丝分裂周期蛋白质的变化

图 2 所示为小麦野二燕 1 号根尖分生组织细胞 有丝分裂不同时期蛋白质变化的分析结果,在间期细 胞中约有300种蛋白质组分被检测到,分子量约处于 10 kDa~110 kDa之间,等电点的范围在 4.5~8.6,靠 近酸性一侧的蛋白质组分较为丰富。与间期相比, 前期蛋白质组发生了明显变化:有1种蛋白质组分消 失,为斑点 1 (28 kDa/pI 5.2); 5 种新的蛋白质组分被 诱导,它们分别为斑点 2 (37 kDa/pI 6.6)、斑点 3 (38 kDa/pI 6.8)、斑点 4 (34 kDa/pI 7.2)、斑点 5 (38 kDa/pI 7.5)和斑点 6 (15 kDa/pI 6.9)。中期有 2 种蛋白质消失,为斑点 7 (51 kDa/pI 7.3)和斑点 8 (23 kDa/pI 6.1); 有 1 种蛋白质组分被诱导,为斑点 9 (21 kDa/pI 6.3)。后 - 末期有 4 种蛋白质组分被诱导,它 们分别为斑点 2 (37 kDa/pI 6.6)、斑点 7 (51 kDa/pI 7.3)、斑点 8 (23 kDa/pI 6.1)和斑点 10 (43 kDa/pI 6.6); 斑点 9 (21 kDa/pI6.3)消失。由此可见,上述小麦周 期蛋白质组的差异斑点主要集中在中低分子量(15 kDa~55 kDa)区。此外,蛋白质斑点 2 (37 kDa/pI 6.6), 斑点 7 (51 kDa/pI 7.3)、斑点 8 (23 kDa/pI 6.1)和斑 点 9 (21 kDa/pI 6.3)发生了明显的周期性变化。其 中,斑点 2 (37 kDa/pI 6.6)、斑点 7 (51 kDa/pI 7.3)和 斑点 8 (23 kDa/pI 6.1)存在于前期和后 - 末期中,中 期消失;斑点6 (15 kDa/pI 6.9)在间期未发现,而在细 胞分裂的前期、中期和后 - 末期一直存在;斑点 9 (21 kDa/pI 6.3)只存在于中期,不存在于前期及后 -末期。

2.3 呈现有丝分裂周期时相变化相关蛋白质的质 谱鉴定

在细胞有丝分裂周期中,共有14种蛋白质斑点 发生变化。为了探讨这些变化的蛋白质斑点与细胞 有丝分裂周期调控间可能存在的关系,我们对发生明 显周期变化的5种蛋白质斑点做了质谱分析。但只 有2种蛋白质的归属得到鉴定,它们是在间期没有出

Fig. 1 Mitoticsynchrony cells of root meristems in wheat (500×)

图 2 小麦根尖分生组织细胞分裂周期蛋白质组变化的 SDS-PAGE 分析 A: 间期; B: 前期; C: 中期; D: 后 - 末期。

Fig. 2 2D SDS-PAGE analysis of proteome changes in the root meristems cell division cycle of wheat A: interphase; B: prophase; C: metaphase; D: anaphase-telophase.

现,但在细胞分裂前期、中期和后-末期均存在的 斑点6和在中期出现,在后-末期消失的斑点9,其 中斑点6为 chromosome segregation protein SMC,斑 点9为 helicase(表1和图3)。

3 讨论

Hu和秋水仙素是常被用来诱导同步化的药物。 已知 Hu 能够抑制核苷酸还原酶(ribonucleotide reductase),因此能将细胞分裂阻止在 $G_1 \rightarrow S$ 。秋水 仙素则能扰乱纺锤丝的正常功能,使细胞分裂阻断 在中期。但已有一些研究表明,用秋水仙素诱导中 期同步化,染色体的分散性不够理想,Met.I (有丝 分裂指数)的频率也偏低,这样,对诸如用流式分离 方法研究单条染色体形态、结构等方面造成困难, 因此近年来,很多研究者常采用APM来替代秋水仙 素^[18-20],收到了很好的效果。在植物中,我们曾经 利用高度自然同步化的百合花粉细胞研究减数分裂 不同时期蛋白质组的变化^[21,22]。而在植物有丝分裂 周期蛋白质组的研究中,由于没有自然同步化的分裂 细胞,因此,我们利用Hu和APM的双阻断法分别获

Table 1Identification of protein spots by MS/MS												
斑点号	登录号	分子量(kDa)	等电点	序列覆盖率(%)	得分	蛋白质名称	生物学功能					
No. spot	No. accession	Molecular	Isoelectric	Sequence coverage (%)	Mascot score	Protein name	Biological function					
		weight (kDa)	point									
6	gi 255566821	111333	5.53	58%	75	Chromosome segregation protein SMC	Chromosome formation and segregation					
9	gi 5541663	80415	7.20	50%	44	Helicase	DNA duplication and energy metabolism					

表1 蛋白质斑点的 MS/MS 质谱鉴定

						8
Smot 6						
Spot o			INTERPORT	CHWODODNOO	COLDOD OKO	
- 1	MIGKFSFLVA	ASTAAYAVKQ	LNIKIEKSPI	SHVGPSENGQ	GSIDQR GKG	
10	R	EKDGEE	EEEEEVK	NEWANDAGEL		
101			AEKDKVYE	NEMANNASEL	EKLKNLVKEL	
151	EEREVKLEGE	LLEYYGLK	012112	IKTVEIDM	LNITINSLQA	
201	ER LQEEVA	QGASAKK	TKIK	QIQLDANQT	K QQ	
251	VSGLQAKEEE	AIK DAELER	DLEV	EVVELRR	ELT	
301	1K 1	VSLSNMTESE	MVAKARDDVN	NLRHANEDLL	KQVEGLQMNR	
351	FSEVEELVYL	RWVNACLRYE	LR	VSARDLSKNL	SPKSQEKAKH	
401	LMLEYAGSER				YSSLSKK	
451	PSLIQK KW	GK DDSSAL	SSPSRSFSAD	SPSRTSMSLR	SRGPLEALML	
501	RNVGDSVAIT	TFGK		TRVASGD	SLNSVASSFQ	
551	LMSK		LALEREKQ	IKERAEKARA	ARFGENSSFQ	
601	SIAKGGREKA	VSLPSQLAQI	K	AV	DSQTISKMKL	
651	TQIEKRPTR					
701			VHR	RE	AKK	
751	S	NMIGEIENR				
801			AVLKHFD	WPESKADALR	EAAFEYQDLM	
851	KLEKQVSSFV	DDPNLPCEAA	LKK LLEK		TRDMAISRYR	
901	EFGIPINWLL	DSGVVGKIKL	SSVQLAKKYM	KRVASELDAM	SGPEKEPNR	
951			TFEE	LRSR		
Spot 9						
1		CADALTG	TDLTSSSEK	ΛF	SR GSDRNL	
51	PQVLRLQSLL	HRGIGVHHAG	LLPIVKEVVE	MLFCRGVIK		
101		KFDGK	QLLPGEYT	QMAGRAGRRG	LDKTGTVVVM	
151	CRDEVPDESD	LRRVIVGSAT	RLESQFRLTY	IMILHLLR		
201	K	LPEK	HIE	IDLLIYSSRC	IKGEPAIEDY	
251	YDMYMEANEY	NNKMSEAVMQ	SPYAQSFLVQ	GRVVVMK		
301	GPSNTNRQY	VVLVIKSEIP	PPEK			
351						
401	IDQVR		SDG	NKFPPALDPV	KDLK	
451	WTNL	LQKMSMNKCH	GCVK			
501		IDVLK				
551			NTSA	PTLTPKLAK		
601	LGELQAQYNL	QIDPEEYAQE	NLKFGLVEVV	YEWAK		
651	TIVRL	DETCREFK		KMDAASNAI	KRDIVFAASL	
701	YVTGV					

图 3 斑点 6、斑点 9 部分氨基酸序列的 MS/MS 质谱鉴定

Fig. 3 The partial amino acid sequences of spot 6 and spot 9 which were identified by MS/MS

得前期、中期和后 - 末期高频率分裂细胞, 为我们 进行植物有丝分裂周期蛋白质组研究提供了可能。

蛋白质组分析表明,有14种蛋白质斑点在小麦 根尖分生组织细胞不同分裂期呈现出变化,我们对其 中5个蛋白质斑点进行了质谱分析,但有3个蛋白质 斑点由于含量偏低或所得出的结果得分值偏低,而另 外2种斑点的归属得到鉴别,其中斑点6为 chromosome segregation protein SMC, 斑点9为 helicase。 斑点6在间期不存在,但进入细胞分裂的前期,这个 蛋白质斑点被检测到,并且在中期和后-末期始终存 在。斑点9则在前期、中期出现,后-末期消失。 从这2个蛋白质基本生化功能分析,它们是与染色体 组装、染色体分离、DNA 复制和能量产生有关的。 而这一功能是与细胞分裂周期事件相吻合的,如在间 期细胞中,我们不能观察到染色体的形态结构,但到 了前期,由于染色质凝集、染色丝经折叠组装成染 色体,然后进一步折叠和螺旋化后形成明确可辨的染 色体,最后着丝粒分裂,2个姐妹染色体形成,细胞分 裂进入后-末期。但目前我们还不能够确切了解这 2个以及其它12个在实验中揭示的呈周期变化的蛋 白质在有丝分裂周期调控中的作用机理。

虽然蛋白质组学技术已经被用于很多生命科学 研究领域并取得很多进展^[23-29],但由于蛋白质技术高 度依赖数据库,使得很多研究者新发现的蛋白质并不 能鉴别其归属,本研究中也有类似的情况,该工作中 新鉴定的2种蛋白质以及在细胞有丝分裂过程中新 检测到的蛋白质变化这一实验结果是以往没有报道 的,因此对于研究植物细胞有丝分裂周期调控机理有 一定的参考意义。

参考文献(References)

- Kao FT. Chromosome microdissection and microcloning in human molecular genetics. Somat Cell Mol Genet 1978; 13: 375-80.
- 2 Kao FT, Yu JW. Chromosome microdissection and cloning in human genome and genetic disease analysis. Proc Natl Acad Sci USA 1991; 88: 1844-8.
- 3 Lüdecke HJ, Senger G, Claussen U. Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature 1989; 338: 348-50.
- Lüdecke HJ, Senger G, Horsthemke B. Construction and characterization of band-specific DNA libraries. Hum Gener 1990; 84: 512-6.

- 5 Wang ML, Leitch AR, Schwarzacher T. Construction of a chromosome-enriched HpaII library from flow-sorted wheat chromosomes. Nucleic Acids Res 1992; 20: 1897-901.
- 6 Jung C, Fischer F, Claussen U. A DNA library from an individual Beta patellaris chromosome conferring nematode resistance obtained by microdissection of meiotic metaphase chromosomes. Plant Mol Biol 1992; 20: 503-11.
- 7 陈成斌,宋文芹。利用 Hu 和 APM 双阻断法诱导高频率植 物根尖细胞有丝分裂同步化的研究。南开大学学报 1999; 32(1): 28-31.
- 8 Marie CC, Pascal G. Mitosis in plants: how far we have come at the molecular level ? Curr Opin Plant Biol 2002; 5: 487-93.
- 9 Constabel F, Kurz WG, Chatson KB, Gamborg OL. Induction of partial synchrony in soybean cell cultures. Exp Cell Res 1974; 85: 105-10.
- Hadlaczky G, Bisztray G, Praznovszky T, Dudits D. Mass isolation of plant chromosomes and nuclei. Planta 1983; 157: 278-85.
- Mill M, Saxena PK, Fowke LC. Isolation of chromosomes from suspension cultures of vicia hajastana. Cytologia 1987; 52: 523-8.
- 12 Griesbach RJ, Malmkerg RL, Carlson PS. An improved technique for the isolation of higher plant chromosomes. Plant Sci Lett 1982; 24: 55-60.
- 13 Schubert I, Dolezel J, Houben A. Refined examination of plant metaphase chromosomes structure at different levels made feasible by new isolation methods. Chromosoma 1993; 102: 96-101.
- 14 Yan SP, Tang ZC, Su W. Proteomic analysis of salt stressresponsive proteins in rice root. Proteomic 2005; 5: 235-44.
- 15 Bradford M. A rapid and sensitive method for the guantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54.
- 16 Castro AJ, Caraptio C, Zorn N, Magne C, Leize E, Dorsselaer AV, et al. Proteomic analysis of grapevine(Vitis vinifera L.) tissues subjected to herbicide sress. J Exp Bot 2005; 56: 2783-95.
- Laemmli UK. Cleavage of structure proteins during the assembly of the head of bacteriophase T4. Nature 1970; 227: 680-5.
- 18 Pan HW, Houben A, Schlegel R. Highly effective cell synchronization in plant roots by hydroxyurea and amiprophos-methyl or colchicines. Genome 1993; 36: 387-90.
- 19 Laat DAMM, Blaas J. Flow cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 1984; 67: 463-7.
- 20 Laat DAMM, Verhoeven HA, Ramulu KS. Efficient induction by amiprophosmethyl and flow cytometric sorting of micronuclei in Nicotiana plumbag-inifolia. Planta 1987; 172: 473-8.
- 21 王振英,彭永康,陈 宏。用双向电泳分析百合减数第一分 裂周期蛋白质的变化。植物研究 2001; 21(4): 596-9.
- 22 彭永康, 于 珍, 霍 昕, 于建春, 张自立。用显微分离和超敏

感银染电泳方法研究百合简述第一分裂周期蛋白质变化。 植物研究 2001; 21(2): 313-6.

- 23 Cui S, Huang F, Wang J, Ma X, Cheng YS, Liu JY. A proteomic analysis of cold stress responses in rice seedings. Proteomics 2005; 5: 3162-72.
- Curto M, Camafeita E, Lopez JA, Maldonado AM, Rubiales D, Jorrin JV. A proteomics apporch to study pea(*Pisum satvum*) responses to powdery mildew (*Erysiphe pisi*). Proteomics 2006; 6: S163-74.
- 25 Gazanchian A, Hajheidari M, Sima NK, Salekdeh GH. Proteomic response of *Elymus elongatum* to severe water stress and recovery. J Exp Bot 2007; 582: 291-300.

- 26 Jiang YG, Yang B, Harris NS, Deyholos MK. Comparative proteomic analysis of NaCl stress-responsive proteins in *Arabidopsis* roots. J Exp Bot 2007; 58: 3591-607.
- Saledeh GH, siopongco J, Wade LJ, Ghareyazie B, Bennett J.
 Proteomic analysis of rice leaves during drought stress and recovery. Proteomic 2002; 2: 1131-45.
- 28 Sweetlove LJ, Haezlewood JL, Herakld V, Holtzapffel R, Day DA, Leaver CJ, et al. The impact of oxdiative stress on Arabidopsis mitochondria. Plant J 2002; 32: 891-904.
- 29 Wang Y, Yang L, Xu H, Li Q, Ma ZQ, Chu CG. Differential proteomic analysis of proteins in wheat spikes induced by *Fusarium graminearum*. Proteomic 2005; 5: 4496-503.

Inducement of High Frequency Mitotic Synchronization and Studies on Cell Division Cycle Proteome of Root Meristem in Wheat

Lian Wang, Feng-Ying Yin, Shuang Duan, Fu Gan, Zhen-Ying Wang*, Yong-Kang Peng* (College of Life Science / Tianjin Key Laboratory of Cyto-genetical and Molecular Regulation, Tianjin Normal University, Tianjin 300387, China)

Abstract In this study, Hu and APM are utilized to increase the frequency of mitotic synchronism on meristematic tissue in wheat. The frequency of induced synchronous prophase is 20%, metaphase is 79%, anaphase-telophase is 27%. 2D SDS-PAGE analysis showed that the composition of mitotic cyclin in wheat was changed periodically. In comparison with the map of interphase, 5 different protein spots (37 kDa/pI 6.6, 38 kDa/pI 6.8, 34 kDa/pI 7.2, 38 kDa/pI 7.5 and 15 kDa/pI 6.9) appeared in the map of prophase, 1 protein spot (28 kDa/pI 5.2) disappeared. In the map of metaphase, 1 protein spot (21 kDa/pI 6.3) appeared and 2 different protein spots (51 kDa/pI 7.3 and 23 kDa/pI 6.1) disappeared. After meristematic cells turned into anaphase-telophase, 4 different protein spots (37 kDa/pI 6.6, 51 kDa/pI 7.3, 23 kDa/pI 6.1 and 43 kDa/pI 6.6) appeared, and 1 protein spot (21 kDa/pI 6.3) was lost. In the whole cell cycle, 4 protein spots (37 kDa/pI 7.3, 23 kDa/pI 6.6, 51 kDa/pI 6.1 and 21 kDa/pI 6.3) appeared and disappeared periodically. 2 protein spots were identified by MS/MS. spot 6 was identified as chromosome segregation protein SMC, and spot 9 was identified as helicase protein. These identified protein spots involved in chromosome formation and segregation, DNA duplication and energy metabolism.

Key words synchronous phase; mitotic; proteomic; MS/MS; *Triticum asetivum*

This work was supported by the Tianjin Key Science and Technology Program (No.10ZCKFNC00200)

Received: July 15, 2010 Accepted: October 23, 2010

^{*}Corresponding author. Tel: 86-22-23766569, E-mail: wzycell@yahoo.com.cn, pykcell@yahoo.com.cn