miR-30a-5p在高糖引起人微血管内皮损伤中的 作用机制

白友菊^{1,2} 张路^{1,2} 张娇^{1,2} 周波^{1*} (¹重庆医科大学附属第一医院内分泌科,重庆 400016; ²重庆医科大学附属第一医院, 重大代谢性疾病转化医学重点实验室,重庆 400016)

摘要 该研究主要探讨miR-30a-5p对高糖培养的人微血管内皮细胞生物学行为的影响及其 可能潜在的机制。采用RT-qPCR分别检测正糖组、渗透压组和高糖组中miR-30a-5p的表达差异,并 上调miR-30a-5p,通过EdU、Transwell实验、成管实验、β-半乳糖苷酶染色和Western blot检测p21 的表达以观察细胞的增殖、迁移、成管和衰老情况。同时检测p53蛋白的表达,探索miR-30a-5p对 高糖培养的人微血管内皮胞生物学行为的调节是否是通过直接靶向p53的。结果显示,高糖可显著 下调内皮细胞中miR-30a-5p的表达,促进细胞衰老,抑制其增殖、迁移和成管能力。上调miR-30a-5p可改善高糖诱导的内皮细胞衰老,并在一定程度上逆转高糖对其生物学行为的抑制作用。进一 步研究发现,高糖虽在下调人微血管内皮细胞中miR-30a-5p表达的同时,显著增加了p53的表达,但 上调miR-30a-5p后,p53并无显著改变。以上结果提示,miR-30a-5p对高糖条件下内皮细胞生物学 行为的改善作用可能存在其他机制,并非直接靶向调节p53。

关键词 内皮细胞; miR-30a-5p; 细胞衰老; 血管形成

Mechanism of miR-30a-5p in Human Microvascular Endothelial Injury Induced by High Glucose

BAI Youju^{1,2}, ZHANG Lu^{1,2}, ZHANG Jiao^{1,2}, ZHOU Bo^{1*}

(¹Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; ²The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China)

Abstract This study was to investigate the effect of miR-30a-5p on the biological behavior of human microvascular endothelial cells cultured in high glucose and its possible underlying mechanism. RT-qPCR was used to detect the expression of miR-30a-5p in the normal glucose group, osmotic pressure group and high glucose group respectively. Meanwhile, the cell proliferation, migration, tube formation and senescence were observed with or without up-regulated miR-30a-5p through EdU staining, Transwell assay, tube formation assay, β -galactosidase staining and the expression of p21 analysis. Finally, the expression of p53 in each group was detected to explore whether the protective effect of miR-30a-5p on human microvascular endothelial cells under high glucose conditions is to directly target p53. Result shows that high glucose can significantly down-regulate the expression of miR-30a-5p in endothelial cells, promoting cell senescence, and inhibit its proliferation, migration and tube forma-

收稿日期: 2020-08-04 接受日期: 2020-09-15

*通讯作者。Tel: 18225369881, E-mail: zhoubo915@126.com

国家自然科学基金(批准号: 81370940)资助的课题

Received: August 4, 2020 Accepted: September 15, 2020

This work was supported by the National Natural Science Foundation of China (Grant No.81370940)

^{*}Corresponding author. Tel: +86-18225369881, E-mail: zhoubo915@126.com

URL: http://www.cjcb.org/arts.asp?id=5384

tion. Up-regulation of miR-30a-5p can reduce the cell senescence induced by high glucose, and reverse the inhibitory effect of high glucose on its biological behavior to a certain extent. In addition, the study also found that although high glucose significantly reduced the expression of miR-30a-5p and increased the expression of p53, there was no parallel change in p53 expression after upregulation of miR-30a-5p. That suggests that miR-30a-5p may improve the biological behavior of endothelial cells under high glucose through other mechanism, rather than directly targeting p53.

Keywords endothelial cells; miR-30a-5p; cell senescence; angiogenesis

创面愈合困难系糖尿病常见的并发症, 慢性高 血糖所致的血管形成障碍被认为是诱发上述病理生 理现象的关键环节[1-2]。既往研究已证实, 高糖可诱 导内皮细胞衰老,影响其增殖、迁移,从而导致血 管形成受损[3-4],但其分子机制尚未完全阐明。近年 来,miRNA与血管形成间的关系引人注目^[5],研究表 明, miR-30a在糖尿病大鼠伤口组织中的表达显著下 调^[6], 且还有研究发现, miR-30a-5p在增殖期的人脐 静脉内皮细胞(human umbilical vein endothelial cells, HUVECs)中高表达[7],并介导血管形成^[8]。另有学 者亦证实,该miRNA可抑制BJ人原代成纤维细胞的 衰老^[9],且该过程可能与其靶基因p53关系密切^[10-11]。 为此,本文以miR-30a-5p为切入点,选择人微血管 内皮细胞(human microvascular endothelial cell line, HMEC-1)为研究对象,体外模拟高糖环境,检测高糖 负荷对HMEC-1中miR-30a-5p表达的影响,同时观察 细胞衰老、增殖、迁移和成管的变化;并进一步探 讨高糖诱导HMEC-1生物学行为的改变是否依赖于 miR-30a-5p; 最后通过Western blot检测p53的表达, 探索miR-30a-5p对该过程的调节是否通过直接靶向 p53, 以期从miRNA的角度探究高糖所致血管内皮 损伤的新机制。

1 材料与方法

1.1 材料与试剂

HMEC-1购自上海中乔新舟生物技术有限公司; ECM培养基购自美国Sciencell公司; *D*-葡萄糖、甘 露醇购自美国Sigma公司; EdU试剂盒、miR-30a-5p agomir、agomir NC、miR-30a-5p/U6逆转录及PCR 引物购自广州市锐博生物科技有限公司; 转染试剂 Lipo8000、胰蛋白酶、RIPA裂解液、BCA蛋白浓 度检测试剂盒、SDS-PAGE凝胶配制试剂盒、显影 液、β-半乳糖苷酶试剂盒均购自上海碧云天生物技 术公司; PVDF膜购自美国Millipore公司; 封闭奶粉 购自成都百乐科技有限公司; Transwell小室购自美 国Corning公司; Mtrigel胶购自美国BD公司; Trizol 试剂、RNA逆转录试剂盒及SYBR Green购自日本 TaKaRa公司; p53单克隆抗体购自CST公司; p21单克 隆抗体购自美国Proteintech公司; β-actin单克隆抗体 购自天津三箭生物技术股份有限公司; HRP标记二 抗购自北京中杉金桥生物技术有限公司。

1.2 细胞培养与分组

HMEC-1于37 °C、5% CO₂条件下用内皮细胞 培养基(endothelial cell medium, ECM)传代培养,第 4~7代用于实验。(1)研究高糖对HMEC-1的影响 时,分3组。正糖组(NG: 5.5 mmol/L *D*-葡萄糖)、渗 透压组(OSM: 5.5 mmol/L *D*-葡萄糖+24.5 mmol/L甘 露醇)、高糖组(HG: 30 mmol/L *D*-葡萄糖)。(2)研 究miR-30a-5p对高糖条件下HMEC-1的影响时,分3 组。高糖对照组(30 mmol/L *D*-葡萄糖)、阴性对照 组(agomir NC+30 mmol/L *D*-葡萄糖)、miR-30a-5p 干预组(miR-30a-5p agomir+30 mmol/L *D*-葡萄糖)。 所有分组中高糖均干预48 h。

1.3 miR-30a-5p agomir及其阴性对照**agomir** NC 的转染

根据说明书使用Lipo8000为助转剂进行转染。 未经处理的为空白对照组记为control组,转染agomir NC的阴性对照组记为agomir NC组,转染miR-30a-5p agomir的组记为miR-30a-5p agomir组。转染成功后 的细胞(包括空白对照组),传代后予以高糖培养48 h 用于后续实验,即高糖对照组(HG)、阴性对照组 (HG+agomir NC)和miR-30a-5p干预组(HG+miR-30a-5p agomir)。

1.4 HMEC-1生物学行为的检测

1.4.1 衰老相关的β-半乳糖苷酶染色实验 细胞于 6孔板中分组干预培养48 h, PBS清洗, 加入1 mL染色 固定液, 室温固定20 min, PBS清洗后加入1 mL染色 工作液(染色液A: 10 μL、染色液B: 10 μL、染色液C:
930 μL、X-Gal: 50 μL), 37 °C非二氧化碳孵箱中孵 育过夜。PBS清洗2次, 加入2 mL PBS, 每孔随机选 择3个不同的区域,100×倒置显微镜下观察并采集图像。实验重复3次,以细胞阳性率[(蓝色细胞数/总细胞数)×100%]表示细胞衰老程度。

1.4.2 增殖实验 采用EdU实验检测细胞增殖:96 孔板接种6×10³个细胞,每组3个复孔,干预48 h,加 入ECM培养基稀释的EdU溶液,37 °C孵育2 h。PBS 清洗、多聚甲醛(4%)固定、甘氨酸和渗透剂孵育, 清洗后加入1× Apollo染色反应液,避光、室温孵育 30 min。再加渗透剂,PBS清洗后,加入1× Hoechst 33342反应液,避光、室温孵育30 min,PBS洗后于 100×倒置荧光显微镜下随机选取3个视野计数统计。 实验重复3次,以(红色荧光数/蓝色荧光数)×100%表 示细胞的增殖能力。

1.4.3 迁移实验 采用Transwell实验检测细胞迁 移: 计数并调整细胞浓度为2×10⁵个/mL。24孔板中 加入600 μL ECM完全培养基, 放入小室, 上室加入 100 μL细胞悬液, 培养24 h。PBS清洗, 4%多聚甲醛 固定30 min, 0.1%结晶紫染色15 min, 用湿棉签擦去 上室底部膜表面的细胞, PBS洗后于100×倒置显微 镜下随机选取3个视野观察并采集图像。实验重复3 次, 计数并统计每个视野中迁移的细胞数。

1.4.4 基质胶成管实验 ECM培养基按1:1稀释基 质胶,48孔板中加入180 μL基质胶培养基混合液, 37 °C放置30 min。每孔加4×10⁴个细胞(悬于500 μL 基础培养基内),37 °C孵箱培养,第4、8 h于100×倒 置显微镜下观察并采集图像。实验重复3次,采用 Image J软件对细胞所形成的血管分支总长度和网格 数目进行统计分析。

1.5 实时荧光定量PCR(RT-qPCR)

Trizol提取细胞总RNA, 茎环法逆转录miR-30a-5p及内参U6, 具体操作严格按逆转录试剂盒说明书 进行。采用SYBR Green进行实时荧光定量PCR。依据PCR反应所得的Ct值,计算目的基因相对表达量,即2^{-4ACt}。

1.6 蛋白提取与Western blot

按RIPA:PMSF=100:1配制细胞裂解液,冰上裂解 细胞并提取蛋白,按说明书配制12%的分离胶。电泳 后,低温将蛋白电转至PVDF膜上,TBST洗膜,5%脱 脂奶粉室温封闭2h。洗膜,一抗稀释液稀释一抗(p21 稀释比例1:1000、p53稀释比例1:1000、β-actin稀释 比例1:1000),4°C孵育过夜。洗膜,室温二抗孵育1h, TBST洗膜3次,采用ECL发光检测,Fusion软件对蛋白 进行定量分析。

1.7 统计学处理

采用GraphPad prism 6.0软件对数据进行统计 分析,资料采用均数±标准差(x±s)表示(n≥3)。多组 比较采用单因素方差分析,组间进一步两两比较采 用Turkey法, P<0.05为差异有统计学意义。

2 结果

2.1 高糖对HMEC-1中miR-30a-5p表达的影响

采用RT-qPCR检测正糖组、渗透压组和高糖 组HMEC-1中miR-30a-5p的表达情况以探索高糖对 miR-30a-5p表达的影响。结果显示,与正糖组相比, 渗透压组miR-30a-5p的表达差异无统计学意义,而 高糖组中该miRNA的表达却显著下调(P<0.05,图 1)。说明高糖可下调HMEC-1中miR-30a-5p的表达, 且该过程与渗透压效应无关。

2.2 高糖对HMEC-1衰老及生物学行为的影响

2.2.1 高糖对HMEC-1衰老的影响 通过Western blot检测p21蛋白表达和β-半乳糖苷酶(senescenceassociated β-galactosidase, SA-β-gal)染色(阳性呈蓝)

*P<0.05, 与正糖组相比。 *P<0.05 vs NG group.

色)来判定细胞衰老情况。结果显示,高糖组SA-β-gal阳性率(62.17±7.182)%较正糖组(30.96±2.324)% 显著增加,且p21的表达也明显高于正糖组(P<0.05, 图2A),而正糖组和渗透压组(32.02±2.882)%间并无 明显的统计学差异。表明高糖可通过非渗透压的方 式诱导HMEC-1衰老。

2.2.2 高糖对HMEC-1增殖的影响 采用EdU实验 检测细胞增殖,荧光显微镜下观察, Hoechst 33342 将细胞核染成蓝色, EdU(红色)代表处于增殖期的细

胞。结果显示,高糖组(30.61±0.2510)%中细胞的增 殖能力较正糖组(42.25±0.4089)%显著减弱(P<0.05, 图2B),而正糖组与渗透压组(39.74±1.3680)%间无显 著差异。说明高糖可抑制HMEC-1的增殖能力,且 与渗透压作用无关。

2.2.3 高糖对HMEC-1迁移的影响 Transwell 实验结果显示,相比于正糖组209.0±2.082,高糖 组143.0±2.517细胞在24 h时的迁移数量显著减少 (P<0.05,图2C),而正糖组与渗透压组221.3±4.096间

A: Western blot检测各组中p21的表达及细胞SA-β-gal染色; B: EdU检测各组细胞的增殖情况; C: Transwell实验检测各组细胞迁移情况。 *P<0.05, 与正糖组相比。

A: the expression of p21 protein measured by Western blot and the SA- β -gal assay in each group; B: cell proliferation was detected with EdU in each group; C: cell migration was detected with Transwell assay. *P<0.05 vs NG group.

图2 高糖对HMEC-1衰老、增殖和迁移的影响

Fig.2 Effects of high glucose on senescence, proliferation and migration of HMEC-1

的数据无统计学差异。表明高糖可抑制HMEC-1的 迁移能力,且此效应与渗透压作用无关。

2.2.4 高糖对HMEC-1成管的影响 基质胶成管实 验表明,相比于正糖组,高糖组中HMEC-1的成管能 力减弱,细胞所形成的血管分支总长度及网格数在 第4、8 h时均显著减少(P<0.05,图3),而正糖组与渗 透压组间无显著差异。证明高糖可减弱HMEC-1的 血管形成能力,且与渗透压效应无关。

2.3 miR-30a-5p对高糖条件下HMEC-1生物学行为的影响

为探究高糖对HMEC-1生物学行为的抑制作 用是否与miR-30a-5p的下调有关,采用miR-30a-5p agomir转染该细胞,结果显示,agomir转染后, HMEC-1中miR-30a-5p的表达相较空白与阴性对照 组均显著上调(P<0.05,图4)。

2.3.1 miR-30a-5p对高糖条件下HMEC-1衰老的影响

*P<0.05, 与正糖组相比。 *P<0.05 vs NG group.

图3 高糖对HMEC-1成管能力的影响 Fig.3 Effect of high glucose on tube formation of HMEC-1

*P<0.05, 与阴性对照组相比。 *P<0.05 vs agomir NC group.

图4 miR-30a-5p agomir转染后HMEC-1中该miRNA的表达 Fig.4 The expression of miR-30a-5p in HMEC-1 after miR-30a-5p agomir intervention

结果(图5A)显示,相比于高糖对照组(62.17±7.182)% 和阴性对照组(63.29±1.861)%,miR-30a-5p干预组 (28.94±4.008)%中SA-β-gal染色阳性率显著降低,且 p21的表达明显下调(P<0.05)。表明上调miR-30a-5p可抑制高糖诱导的内皮细胞中p21的表达上调,改善HMEC-1的衰老。

A: Western blot检测各组中p21的表达及细胞SA-β-gal染色; B: EdU检测各组细胞的增殖情况; C: Transwell实验检测各组细胞迁移情况。 *P<0.05, 与agomir阴性对照组相比。

A: the expression of p21 protein measured by Western blot and the SA- β -gal assay in each group; B: cell proliferation was detected with EdU in each group; C: cell migration was detected with Transwell assay. *P<0.05 vs agomir NC group.

图5 miR-30a-5p对高糖条件下HMEC-1的衰老、增殖和迁移的影响

Fig.5 Effects of miR-30a-5p on senescence, proliferation and migration of HMEC-1 under high glucose conditions

图6 miR-30a-5p对高糖条件下HMEC-1成管的影响 Fig.6 Effect of miR-30a-5p on tube formation of HMEC-1 under high glucose conditions

2.3.2 miR-30a-5p对高糖条件下HMEC-1增殖的影响 如图5B所示, miR-30a-5p干预组(43.39±1.488)%细胞 的增殖能力较高糖对照组(29.58±1.243)%和阴性对 照组(29.48±0.7981)%显著增强(P<0.05)。提示上调 miR-30a-5p可逆转高糖对HMEC-1增殖的抑制作用。 2.3.3 miR-30a-5p对高糖条件下HMEC-1迁移的影 响 结果(图5C)显示,与高糖对照组114.3±8.090 和阴性对照组111.3±6.960相比, miR-30a-5p干预组 219.0±12.77中HMEC-1在24 h时所迁移的细胞数显 著增多(P<0.05)。说明上调miR-30a-5p可增加高糖 条件下HMEC-1的迁移能力。

2.3.4 miR-30a-5p对高糖条件下HMEC-1成管的影响 如图6所示,miR-30a-5p干预组中的细胞在第
4、8 h时所形成的血管分支总长度和网格数均较阴性对照组显著增加(P<0.05)。表明上调miR-30a-5p可促进高糖条件下HMEC-1的血管形成。

2.4 miR-30a-5p对高糖条件下HMEC-1生物学行 为的调节与p53的关系

前述研究已知,高糖可下调miR-30a-5p,促进 HMEC-1的衰老,抑制其增殖、迁移和血管形成; 而上调miR-30a-5p能够起着逆转高糖的作用,改善 HMEC-1的衰老,促进其增殖、迁移和血管形成。 为进步一探索miR-30a-5p对该过程的调节是否是通 过直接靶向p53的,本研究分别采用Western blot检 测高糖在下调miR-30a-5p时p53的表达,及高糖条件 下上调miR-30a-5p后p53的表达。结果显示,相比于 正糖组和渗透压组,高糖组中p53的表达显著上调 (P<0.05,图7A);但上调miR-30a-5p的表达后,p53的 表达并无明显下调(P<0.05,图7B)。提示miR-30a-5p对高糖条件下HMEC-1生物学行为(衰老、增殖、 迁移和成管)的调节可能存在其他机制,并非通过直 接靶向调节p53。

3 讨论

糖尿病创面难愈目前仍是困扰内分泌界的一 大难题。数据显示, 30%的糖尿病患者终其一生会 发生糖尿病足溃疡, 全球每20 s就有1人因糖尿病而 截肢^[12]。尽管在过去数十年里, 新的治疗方法不断 涌现, 但真正有效的方法仍在进一步的探索中^[13]。 研究表明, 促进创面血管形成, 改善血供可有效促进 糖尿病创面的愈合^[14]。血管形成是指在已有成熟血 管的基础上, 内皮细胞出芽形成新的毛细血管, 这与

A: 高糖对HMEC-1中p53表达的影响。*P<0.05, 与正糖组相比; B: miR-30a-5p对高糖条件下HMEC-1中p53表达的影响。n.s.: P>0.05, 与agomir 阴性对照组相比。

A: effect of high glucose on p53 expression in HMEC-1. *P<0.05 vs NG group; B: effect of miR-30a-5p on p53 expression in HMEC-1 under high glucose conditions. n.s.: P>0.05 vs agomir NC group.

图7 各组细胞中p53的表达情况 Fig.7 Expression of p53 protein in each group

内皮细胞的功能状态密切相关^[15]。探索并阐明高糖 所致内皮损伤的分子机制,或能在一定程度上为改 善高糖条件下内皮细胞的生物学行为,促进血管形 成提供新的思路。

现有的研究提示,高糖可诱导内皮细胞衰老, 导致其血管形成能力受损[16]。细胞衰老是指细胞不 可逆的生长停滞,常表现为端粒酶的缩短与β-半乳 糖苷酶的增加,以及细胞周期蛋白p53、p21和p16的 激活,但并非所有衰老的细胞都能同时具备以上特 征^[17]。研究发现, miR-30家族可促进血管形成, 且在 衰老的HUVECs及其分泌的囊泡中表现出不同程度 的下调^[18-19]。然而miR-30a-5p作为miR-30家族的一员, 其对高糖条件下内皮细胞衰老与血管形成的影响及 机制还有待探索。本研究结果显示, 高糖可显著下 调HMEC-1中miR-30a-5p的表达、增加β-半乳糖苷酶 和p21的表达,促进细胞衰老,抑制其增殖、迁移和 血管形成。而上调miR-30a-5p可有效逆转高糖诱导 的HMEC-1衰老,改善其增殖、迁移和成血管能力。 以上结果表明, miR-30a-5p可有效改善高糖环境下内 皮细胞的生物学行为,促进其血管形成,但其能否在 整体上促进糖尿病创面的愈合尚需进一步研究。

既往研究显示, miR-30a-5p可直接靶向调节p53 而调控细胞的凋亡^[20-21],但目前尚没有关于miR-30a-5p/p53在细胞衰老尤其是高糖诱导的内皮细胞衰老 中的研究。本研究中,高糖显著增加了内皮细胞中 p53的表达,这与TOUSIAN等^[22]的研究结果相一致。 但进一步上调miR-30a-5p后, p53并未出现明显的下 调改变,这也在一定程度上说明了miR-30a-5p对高 糖条件下内皮细胞生物学行为的改善作用可能存在 其他机制,而并非通过直接靶向调节p53。关于miR-30a-5p调节细胞衰老的可能机制,有研究发现,miR-30家族直接或间接地参与了衰老相关基因Sirt1的调 节[23],且近期的一项基于三种不同算法的生物信息 学预测发现,miR-30a-5p与Sirt1的mRNA之间可能存 在相互作用^[19]。此外,还有研究提示,miR-30a-5p可 通过抑制CHD7(诱导p16必不可少的共转录激活因 子)和TNRC6A(与DNA损伤和p53激活有关)的表达 而抑制BJ人原代成纤维细胞的衰老^[9]。但在调节高 糖诱导的内皮细胞衰老及生物学行为时, miR-30a-5p与Sirt1、CHD7和TNRC6A之间是否存在直接的 调节作用仍需进一步的研究证实。总之,本文结果 表明,上调miR-30a-5p可逆转高糖诱导的HMEC-1细 胞的衰老,改善高糖对其增殖、迁移的抑制作用,从 而促进高糖条件下内皮细胞血管形成,但此过程并 非通过靶向调节p53。下一步,本小组将进一步采用 转录组学技术探索上述有益作用的具体机制。

参考文献 (References)

- MCEWEN L N, YLITALO K R, HERMAN W H, et al. Prevalence and risk factors for diabetes-related foot complications in translating research into action for diabetes (TRIAD) [J]. J Diabetes Complications, 2013, 27(6): 588-92.
- [2] OKONKWO U A, CHEN L, MA D, et al. Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing [J]. PLoS One, 2020, 15(4): e0231962.
- [3] LIU J, CHEN S, BISWAS S, et al. Glucose-induced oxidative stress and accelerated aging in endothelial cells are mediated by the depletion of mitochondrial SIRTs [J]. Physiol Rep, 2020, 8(3): e14331.
- [4] URYGA A K, BENNETT M R. Ageing induced vascular smooth muscle cell senescence in atherosclerosis [J]. J Physiol, 2016, 594(8): 2115-24.
- [5] WEI L, SUN C, ZHANG Y, et al. miR-503-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregul ating VEGF-A [J]. Gene Ther, 2020, doi: 10.1038/s41434-020-0167-3.
- [6] LIU Y F, DING M, LIU D W, et al. MicroRNA profiling in cutaneous wounds of diabetic rats [J]. Genet Mol Res, 2015, 14(3): 9614-25.
- [7] ANAND S, MAJETI B K, ACEVEDO L M, et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis [J]. Nat Med, 2010, 16(8): 909-14.
- [8] BRIDGE G, MONTEIRO R, HENDERSON S, et al. The microRNA-30 family targets DLL4 to modul ate endothelial cell behavior during angiogenesis [J]. Blood, 2012, 120(25): 5063-72.
- [9] SU W, HONG L, XU X, et al. miR-30 disrupts senescence and promotes cancer by targeting both p16(INK4A) and DNA damage pathways [J]. Oncogene, 2018, 37(42): 5618-32.
- [10] LI J, DONATH S, LI Y, et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway [J]. PLoS Genet, 2010, 6(1): e1000795.

- [11] ZHANG C, LIAO P, LIANG R, et al. Epigallocatechin gallate prevents mitochondrial impairment and cell apoptosis by regul ating miR-30a/p53 axis [J]. Phytomedicine, 2019, 61: 152845.
- [12] 陈明卫, 许樟荣. 糖尿病足病: 时代在改变[J]. 中华糖尿病杂志 (CHEN M W, XU Z R. Diabetic foot disease: times are changing
 [J]. Chinese Journal of Diabetes Mellitus), 2020, 12(6): 359-63.
- [13] MELONI M, IZZO V, GIURATO L, et al. Prevalence, clinical aspects and outcomes in a large cohort of persons with diabetic foot disease: comparison between neuropathic and ischemic ulcers [J]. J Clin Med, 2020, 9(6): 1780-91.
- [14] PAWAR K B, DESAI S, BHONDE R R, et al. Wound with diabetes: present scenario and future [J]. Curr Diabetes Rev, 2020, doi: 10.2174/1573399816666200703180137.
- [15] RIDIANDRIES A, TAN J T, BURSILL C A. The role of CCchemokines in the regul ation of angiogenesis [J]. Int J Mol Sci, 2016, 17(11): 1856-72.
- [16] JIA G, AROOR A R, JIA C, et al. Endothelial cell senescence in aging-related vascular dysfunction [J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(7): 1802-9.
- [17] SUH N. MicroRNA controls of cellular senescence [J]. BMB Rep, 2018, 51(10): 493-9.
- [18] JIANG Q, LAGOS-QUINTANA M, LIU D, et al. miR-30a regulates endothelial tip cell formation and arteriolar branching[J]. Hypertension, 2013, 62(3): 592-8.
- [19] MENSA E, GUESCINI M, GIULIANI A, et al. Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells [J]. J Extracell Vesicles, 2020, 9(1): 1725285.
- [20] FORINI F, KUSMIC C, NICOLINI G, et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis [J]. Endocrinology, 2014, 155(11): 4581-90.
- [21] WANG J, JIAO Y, CUI L, et al. miR-30 functions as an oncomiR in gastric cancer cells through regulation of P53-mediated mitochondrial apoptotic pathway [J]. Biosci Biotechnol Biochem, 2017, 81(1): 119-26.
- [22] TOUSIAN H, RAZAVI B M, HOSSEINZADEH H. Alphamangostin decreased cellular senescence in human umbilical vein endothelial cells [J]. Daru, 2020, 28(1): 45-55.
- [23] VOLKMANN I, KUMARSWAMY R, PFAFF N, et al. MicroRNA-mediated epigenetic silencing of sirtuin1 contributes to impaired angiogenic responses [J]. Circ Res, 2013, 113(8): 997-1003.