乳酸脱氢酶A通过AMPK信号通路抑制人脑 胶质瘤细胞线粒体自噬

刘菲 黄雪阳 杨梦婷 张俊尧 房文静 龚爱华* (江苏大学医学院基础医学研究所,镇江 212013)

摘要 该研究旨在探讨乳酸脱氢酶A(lactate dehydrogenase A, LDHA)对人脑胶质瘤细胞线 粒体自噬的影响。用质粒sh-EGFP或sh-LDHA转染人脑胶质瘤细胞株U87MG, qRT-PCR和Western blot检测干扰效率,荧光染色技术检测线粒体ROS水平及线粒体膜电位,Western blot检测线粒体自 噬相关蛋白及AMPK信号通路相关蛋白表达。结果表明,与sh-EGFP组相比较,sh-LDHA组人脑胶 质瘤细胞U87MG中LDHA的mRNA及蛋白质水平均显著降低,线粒体ROS的产生增加,线粒体膜电 位明显降低,线粒体自噬相关蛋白PINK1、Parkin及BNIP3、BNIP3L的表达增高,AMPK的磷酸化 水平明显升高,而mTOR的磷酸化水平降低。研究结果表明,LDHA能够通过抑制AMPK信号通路, 降低线粒体ROS水平,提高线粒体膜电位,抑制线粒体自噬。

关键词 乳酸脱氢酶A;线粒体自噬;AMPK信号通路;脑胶质瘤

Lactate Dehydrogenase A Inhibits Mitophagy in Human Glioma Cells via AMPK Signaling Pathway

LIU Fei, HUANG Xueyang, YANG Mengting, ZHANG Junyao, FANG Wenjing, GONG Aihua* (Institute of Medical Sciences, School of Medicine, Jiangsu University, Zhenjiang 212013, China)

Abstract The aim of the study was to investigate the effect of LDHA on mitophagy in human glioma cells. The sh-*LDHA* or sh-*EGFP* plasmids were transfected into the glioma cells U87MG, respectively. qRT-PCR and Western blot were used to detect the efficiency of plasmid knockdown. The expression levels of mitophagy-related proteins and AMPK signaling pathway-related proteins were detected by Western blot. Then mitochondrial ROS and mitochondrial membrane potential levels were detected by fluorescence staining. Compared with sh-*EGFP* group, the mRNA and protein levels of LDHA were significantly decreased, and mitochondrial ROS level raised, mitochondrial membrane potential declined in the sh-*LDHA* group. Also, the expression of mitophagy-related proteins PINK1, Parkin, BNIP3, BNIP3L and AMPK signaling pathway-related proteins p-AMPK were significantly increased, while p-mTOR was decreased under these processing conditions in the sh-*LDHA* group. In summary, LDHA inhibits AMPK signaling pathway, reducing mitochondrial ROS levels, enhancing mitochondrial membrane potential, and inhibits mitophagy.

Keywords LDHA; mitophagy; AMPK signaling pathway; glioma

肿瘤细胞偏好于有氧糖酵解^[1]。糖酵解的异常 活跃满足了肿瘤细胞对于生物大分子合成代谢的 需要,提供了大量的代谢前体物质,为肿瘤细胞的 生存能力提供优势^[2]。糖酵解的产物乳酸可诱导肿

收稿日期: 2019-12-19 接受日期: 2020-02-24 国家自然科学基金(批准号: 81372718、81772694)资助的课题 *通讯作者。Tel: 13775369530, E-mail: ahg5@mail.ujs.edu.cn Received: December 19, 2019 Accepted: February 24, 2020 This work was supported by the National Natural Science Foundation of China (Grant No.81372718, 81772694) *Corresponding author. Tel: +86-13775369530, E-mail: ahg5@mail.ujs.edu.cn URL: http://www.cjcb.org/arts.asp?id=5219 瘤细胞的上皮间质转化,促进肿瘤细胞的侵袭与转移^[3]。乳酸脱氢酶(lactate dehydrogenase, LDH) 催化糖酵解过程的最后一步,是催化乳酸和丙酮 酸相互转化的同工酶。乳酸脱氢酶A(lactate dehydrogenase A, LDHA)在肿瘤中异常高表达,通过将 丙酮酸转化为乳酸来促进糖酵解过程。研究表明, LDHA是改变糖酵解代谢的关键,与肿瘤的恶性进 展高度相关^[4]。

线粒体氧化磷酸化与糖酵解间的能量代谢平衡 一直是癌症研究的重要问题。鉴于线粒体在细胞能 量转换过程中发挥的重要作用,多余或是受损的线粒 体必须被及时且有效地清除,以保证细胞能量代谢 的正常进行。在环境恶劣,如活性氧(reactive oxygen species, ROS)刺激、营养缺乏、细胞衰老等条件下, 细胞内线粒体膜发生去极化^[5],从而启动线粒体自噬 途径,选择性分离并降解受损或多余的线粒体^[6]。然 而,LDHA是否影响线粒体自噬尚不清楚^[7]。研究证实, LDHA的过表达可以抑制细胞呼吸,使肿瘤细胞产生 的ROS减少,维持线粒体膜的极化状态^[8]。因此,我们 推测LDHA通过调节线粒体自噬维持肿瘤细胞内能 量稳态。本研究通过干扰LDHA的表达,观察其对 线粒体自噬的影响,为线粒体自噬的激活及线粒体 质量控制机制提供了新的认识。

1 材料与方法

1.1 细胞及质粒

本研究所用人脑胶质瘤细胞株U87MG购自中 国科学院上海细胞库。慢病毒包装质粒psPAX2、 穿梭质粒pMD2.G由江苏大学医学院细胞生物学研 究室保存。pLKO.1-sh-*EGFP、*pLKO.1-sh-*LDHA*质 粒由本课题组前期构建,具体引物序列见文献[9]。

1.2 试剂及仪器

胎牛血清、嘌呤霉素购自Gibco公司; DMEM培 养基、PBS磷酸盐缓冲液购自Hyclone公司; RNAiso 裂解液购自TaKaRa公司; 逆转录试剂盒、羊抗兔、 羊抗鼠二抗、MitoSOX[™] Red荧光染料购自Thermo Fisher Scientific公司; 2× SYBR Green Mix溶液购自 Bio-Rad公司; 兔抗人β-tubulin抗体购自Abcam公司; 鼠抗人LDHA抗体购自Santa Cruz Biotechnology公 司; 信号通路相关抗体购自Cell Signaling Technology公司; ECL发光液购自Millipore Immobilon公司; 6孔、24孔、96孔等培养板购自上海Excell Biology 公司; JC-1荧光探针购自上海碧云天生物技术有限 公司。

仪器包括: CO₂细胞培养箱(Thermo Fisher Scientific公司)、超净细胞工作台(苏州净化设备有限公 司)、化学发光成像仪(北京赛智创业科技有限公司)、 荧光定量PCR扩增仪(Bio-Rad公司)和荧光倒置显微 镜(Carl Zeiss公司)。

1.3 细胞培养

将人脑胶质瘤细胞U87MG培养于含10%灭活 胎牛血清的高糖DMEM培养基中,置于37°C、5.0% CO₂及饱和湿度培养箱中培养至对数生长期,用于 后续实验。

1.4 实时荧光定量PCR(qRT-PCR)

按照 Trizol试剂说明书提取脑胶质瘤细胞 U87MGsh-EGFP组和 sh-LDHA组的 RNA,并反转 录成模板 cDNA, 扩增内参基因 GAPDH和目的基因 LDHA。LDHA上游引物序列为: 5'-CCA ACA TGG CAG CCT TTT CC-3';下游引物序列为: 5'-TCA CGT TAC GCT GGA CCA AA-3'。GAPDH上游引 物序列为: 5'-CTC CTC CAC CTT TGA CGC T-3'; 下游引物序列为: 5'-GGG TCT CTC TCT TCC TCT TGT G-3'。采用2^{-dACt}法分析LDHA的相对表达量(RQ 值),其中 $\Delta Ct=Ct_{10h_{EG}}-Ct_{rhg}$, $\Delta \Delta Ct=\Delta Ct_{spaga}-\Delta Ct_{rdpgaga}$, RQ=2^{-dACt}。

1.5 蛋白质印迹法检测相关蛋白的表达

裂解细胞时加入预先配置好的蛋白裂解液,100 ℃ 加热10 min,4 ℃ 12 000 r/min离心10 min。采用十二 烷基硫酸钠–聚丙烯酰胺凝胶电泳分离样品,湿转 法转印至PVDF膜,5%牛血清白蛋白室温封闭1 h。 LDHA抗体稀释比例为1:1 000,β-tubulin抗体稀释比 例为1:10 000,一抗4 ℃孵育12 h。羊抗兔、羊抗鼠 二抗稀释比例为1:10 000,室温孵育1 h,采用增强化 学发光法显影,图像分析,每组实验独立重复3次。

1.6 荧光染料检测ROS

按照每孔5×10⁴个细胞将sh-EGFP组与sh-LDHA 组稳转细胞均匀接种于24孔板内,培养16~18 h后,用 DMSO避光配置 MitoSOX™ Red储存液(5 mmol/L), 用 PBS缓冲液避光稀释(1:1 000) MitoSOX™ Red储 存液配置为5 µmol/L的MitoSOX™ Red工作液,弃去 细胞培养基,用预热的PBS缓冲液洗涤细胞1次。随 后将MitoSOX™ Red工作液按照300 µL/孔加至孔内, 37 °C避光孵育10 min,吸出培养液,用预热的PBS缓 冲液洗涤细胞3次,再加入500 μL预热的PBS缓冲液, 立即置于荧光显微镜下观察,拍照保存。

1.7 线粒体膜电位检测

将sh-EGFP组与sh-LDHA组稳转细胞消化重悬 后均匀接种至24孔板,每孔约5×10⁴个细胞。避光配 置JC-1染色工作液,剧烈振荡充分混匀。弃去24孔板 内的培养基,使用PBS缓冲液洗涤细胞1次,每孔加入 细胞培养液250 μL,随后加入250 μL配置好的JC-1染 色工作液,充分混匀后放置于细胞培养箱,37 ℃避光 孵育20 min。孵育过程中配制1×JC-1染色缓冲液, 放置于冰浴。孵育结束后弃去上清,用1×JC-1染色 缓冲液洗涤细胞2次,最后加入500 μL细胞培养液, 立即置于荧光显微镜下观察,拍照保存。

1.8 计算相对荧光强度

采用ImageJ软件在相同的参数设定下分析荧光 图像中的荧光强度及细胞数,计算实验组相对于对 照组的相对荧光强度。

1.9 生物信息学分析

下载美国癌症基因组图谱计划(The cancer genome atlas, TCGA)中434例脑胶质瘤患者的基因表 达及临床相关数据,分析不同级别脑胶质瘤患者中 *LDHA*的基因表达水平。下载中国脑胶质瘤基因组 图谱(Chinese Glioma Genome Atlas, CGGA)中315 例患者的mRNA及临床相关数据,将患者按*LDHA* 的mRNA表达水平分组,低于均值为LDHA低表达组(n=158),高于均值为LDHA高表达组(n=158),Ka-plan-Meier生存曲线分析并比较两组患者的生存期。

1.10 统计学处理

用均数±标准差(x±s)显示实验数据,两样本均数比较采用t检验,采用GraphPad Prism 7统计软件进行差异分析, P<0.05为具有显著性差异。

2 结果

2.1 LDHA在脑胶质瘤中的表达及预后分析

TCGA数据库分析结果显示, LDHA在级别最高、预后最差的间质型中表达水平最高, 而在其他亚型的脑胶质瘤中LDHA基因表达水平相对较低(图1A)。病人生存预后分析结果显示, LDHA高表达组病人的总体生存期较低(P<0.05, 图1B)。数据库分析结果提示, 高表达的LDHA预示着脑胶质瘤患者预后生存期短, 有一定的诊断价值。

2.2 LDHA的干扰效率

qRT-PCR检测结果显示,在U87MG细胞中,sh-LDHA组LDHA的mRNA表达水平明显低于sh-EGFP 组,差异具有统计学意义(P<0.05,图2A)。同时, Western blot与灰度分析结果显示,sh-LDHA组LDHA 的蛋白表达也较sh-EGFP组明显下降(P<0.05,图

A: TCGA数据库分析*LDHA*在不同亚型脑胶质瘤中的基因表达水平; B: CGGA数据库分析表明, *LDHA*表达与脑胶质瘤病人生存期相关。 A: the gene expression levels of *LDHA* in 4 subtypes of glioblastoma by TCGA database; B: analysis of the CGGA database indicates that *LDHA* expression is correlated with patient' overall survival.

594

图1 LDHA在脑胶质瘤中的表达及病例分析 Fig.1 The expression pattern and clinical significance of LDHA in gliomas 2B和图2C)。上述结果表明,本研究所用干扰质粒 pLKO.1-sh-*LDHA*能够有效抑制U87MG中LDHA的 mRNA及蛋白的表达。

2.3 sh-LDHA导致线粒体ROS水平增加及线粒体 膜电位降低

采用MitoSOX™ Red荧光染料检测线粒体 ROS水平, MitoSOX™ Red能够被超氧化物氧化, 氧化产物结合核酸后能够产生大量红色荧光。结 果显示,在U87MG细胞中干扰LDHA后,红色荧 光强度增强(图3A和图3B),即线粒体内ROS的 水平增加。线粒体膜电位的检测结果显示,在 U87MG细胞中干扰LDHA后,在同一荧光强度下, 代表线粒体膜电位高的红色荧光强度减弱,代表 线粒体膜电位低的绿色荧光强度增加(图3C和图 3D),表明下调LDHA引起了线粒体膜电位的降 低。

2.4 sh-LDHA促进线粒体自噬

Western blot结果显示,U87MG细胞中干扰 LDHA后,线粒体自噬相关通路蛋白PINK1-Parkin 及BNIP3-BNIP3L发生明显变化。PTEN诱导的假定 激酶1(PTEN induced putative kinase 1, PINK1)、帕 金蛋白(Parkin)、磷酸化的泛素(phospho-ubiquitin, p-ubiquitin)、死骨片1(sequestosome 1, p62)、视神 经病变诱导蛋白 (optineurin)、Bcl-2/E1B-19kDa相 互作用蛋白 3(BCL2/adenovirus E1B 19 kDa proteininteracting protein 3, BNIP3)、Bcl-2/E1B-19 kDa相 互作用蛋白 3样 (BCL2/adenovirus E1B 19kDa interacting protein 3-like, BNIP3L)、轻链 3B(light chain 3B, LC3B)蛋白表达水平显著升高 (图4),由此可见, U87细胞干扰LDHA后,会通过线粒体自噬相关蛋白 通路促进线粒体自噬。

2.5 sh-LDHA激活AMPK信号通路

在干扰LDHA的情况下,在U87MG细胞内检测 AMPK信号通路相关蛋白的表达情况。Western blot 结果显示,sh-LDHA组磷酸化的腺苷活化蛋白激酶 (phospho-5' AMP-activated protein kinase, p-AMPK) 及磷酸化的结节性硬化症相关蛋白2(phospho-tuberous sclerosis complex-2, p-TSC2)的蛋白表达水平较 sh-EGFP组明显升高,磷酸化的mTOR调节相关蛋 白(phospho-regulatory-associated protein of mTOR, p-Raptor)及磷酸化的哺乳动物雷帕霉素靶蛋白 (phospho-mammalian target of rapamycin, p-mTOR) 的蛋白表达水平降低。由此可见,干扰LDHA后, AMPK磷酸化水平升高,AMPK被激活,mTOR磷酸 化水平降低,mTOR被抑制,线粒体自噬被激活(图 5)。

A: qRT-PCR检测U87MG细胞中LDH4的mRNA表达水平; B: Western blot检测U87MG细胞中LDHA蛋白质表达水平; C: 蛋白条带灰度相对分析。 *P<0.05。

A: the mRNA expression of *LDHA* in U87MG cells was detected by qRT-PCR; B: the protein levels of LDHA in U87MG cells were detected by Western blot; C: the relative protein levels of LDHA were detected by densitometry. *P<0.05.

图2 验证sh-LDHA质粒的干扰效率

Fig.2 Verification the interference efficiency of sh-LDHA plasmid

A: fluorescence staining was performed to detect mitochondrial ROS level after transfecting the sh-*LDHA* or sh-*EGFP* plasmids into U87MG cells; B: analysis of relative fluorescence intensity; C: fluorescence staining was performed to detect mitochondrial membrane potential after transfecting the sh-*LDHA* or sh-*EGFP* plasmids into U87MG cells; D: analysis of relative fluorescence intensity. *P<0.05.

图3 干扰LDHA增加线粒体ROS水平并且降低线粒体膜电位

Fig.3 LDHA interference increases mitochondrial ROS levels and reduc es mitochondrial membrane potential

A: Western blot检测线粒体自噬相关蛋白表达水平变化; B:蛋白条带灰度相对分析。*P<0.05, 与sh-EGFP组相比。

A: Western blot was performed to detect the expression levels of mitophagy-related proteins after transfecting the sh-*LDHA* or sh-*EGFP* plasmids into U87MG cells; B: the relative protein levels of mitophagy-related proteins were detected by densitometry. *P < 0.05 vs sh-EGFP group.

图4 干扰LDHA促进线粒体自噬

Fig.4 LDHA interference promotes mitophagy

A: Western blot检测在U87MG细胞中干扰LDHA后, AMPK信号通路相关蛋白表达水平; B: 蛋白条带灰度相对分析。*P<0.05。 A: Western blot was performed to detect the expression levels of AMPK signaling pathway-related proteins after transfecting the sh-*LDHA* or sh-*EGFP* plasmids into U87MG cells; B: the relative protein levels of AMPK signaling pathway-related proteins was detected by densitometry. *P<0.05. 图5 干扰LDHA激活AMPK信号通路

Fig.5 LDHA interference activates AMPK signaling pathway

3 讨论

葡萄糖代谢异常是肿瘤细胞能量代谢重编 程最为突出的特征,优先将葡萄糖代谢为乳酸^[10]。 LDHA在肺癌^[11]、胰腺癌^[12]、乳腺癌^[13]和前列腺癌^[14] 等多种恶性肿瘤中的表达均显著增高。抑制LDHA 可以减少肿瘤细胞生长所需能量的产生^[15],但目前 我们对于LDHA抑制所产生的效应及其控制机制知 之甚少。本研究首先对TCGA和CGGA两种胶质瘤 数据库进行生物学分析,结果显示,LDHA在最恶性 的间质型脑胶质瘤患者中高表达,且与脑胶质瘤患 者的生存期呈负相关,提示LDHA可能成为标志人脑 胶质瘤发生发展及病人预后的分子指标。

在ROS刺激、营养缺乏、细胞衰老等不利因素 存在的情况下,线粒体自噬能够维持线粒体质量的 完整性和数量的充足性,以保证最大程度的能量供 应,维持细胞内环境稳定^[16]。PINK1聚集于线粒体 外膜,促使Parkin的泛素区域Ser65磷酸化,使其从胞 质中聚集到线粒体膜上。Parkin泛素化下游多种线 粒体外膜蛋白。泛素化的蛋白被受体蛋白p62和Optineurin识别,并与自噬标志物LC3结合,从而启动自 噬体的形成^[17]。线粒体发生损伤后,定位于线粒体 外膜上的BNIP3、BNIP3L直接与LC3相互作用,介 导线粒体清除^[18]。本研究结果显示,在干扰LDHA 后,PINK1、Parkin、p-ubiquitin、p62、Optineurin、 BNIP3、BNIP3L及LC3B的蛋白表达水平均明显升 高,这提示,干扰LDHA的表达导致PINK1-Parkin及 BNIP3-BNIP3L途径的线粒体自噬增加。

细胞内有两个重要的能量感受器: AMPK及 mTOR。AMPK是高度保守的新陈代谢调节因子,能 在生理水平的代谢应激条件下维持细胞内能量平 衡^[19]。在营养缺乏的条件下,AMP/ATP比值升高, Thr172位点的AMPK磷酸化水平增加, AMPK被激活, 在Ser1387位点磷酸化TSC2并激活TSC2^[20],同时抑 制Raptor在Ser792位点的磷酸化[21],从而使Ser2448位 点的mTOR磷酸化水平降低, 衰减mTOR活性, 降低 细胞内的ATP需求以维持细胞的能量平衡。有研究 表明,低LDHA可通过调控细胞质ROS水平抑制人胆 管癌细胞的生长^[22]。另一项研究表明,抑制AMPK信 号通路能够阻断依赖ROS发生的自噬^[23]。SCHIEKE 等^[24]在T细胞中发现, 雷帕霉素抑制mTORC1 12 h后, 线粒体膜电位降低,这表明,mTORC1的活性与线粒 体膜电位呈正相关。因此,我们推测,AMPK信号通 路也参与对脑胶质瘤细胞内线粒体自噬的调控作 用。本实验研究在脑胶质瘤细胞中干扰LDHA后,是 否可以通过激活AMPK信号通路,从而激活线粒体 自噬。结果表明,干扰LDHA后p-AMPK及p-TSC2蛋 白的表达水平明显升高, p-Raptor及p-mTOR蛋白的 表达水平降低, AMPK被激活, mTOR被抑制, 线粒体 ROS生成增加,线粒体膜电位降低,提示干扰LDHA 能够激活AMPK信号通路,导致ROS生成增加,线粒 体膜电位降低,最终导致线粒体自噬增加。

本研究表明, LDHA能够抑制脑胶质瘤细胞中 AMPK信号通路的激活, 抑制线粒体ROS生成, 提高 线粒体膜电位, 从而抑制线粒体自噬, 为线粒体自噬 和线粒体质量控制机制提供了新的认识, 但其在体 内的具体作用效果仍需进一步研究证实。

参考文献 (References)

- SANDERSON S M, LOCASALE J W. Revisiting the warburg effect: Some tumors hold their breath [J]. Cell Metab, 2018, 28(5): 669-70.
- [2] STRICKLAND M, STOLL E A. Metabolic reprogramming in glioma [J]. Front Cell Dev Biol, 2017, 5: 43.
- [3] IPPOLITO L, MORANDI A, GIANNONI E, et al. Lactate: a metabolic driver in the tumour landscape [J]. Trends Biochem Sci, 2019, 44(2): 153-66.
- [4] SETH P, CSIZMADIA E, HEDBLOM A, et al. Deletion of lactate dehydrogenase-A in myeloid cells triggers antitumor immunity [J]. Cancer Res, 2017, 77(13): 3632-43.
- [5] ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release [J]. Physiol Rev, 2014, 94(3): 909-50.
- [6] ABUDU Y P, PANKIV S, MATHAI B J, et al. NIPSNAP1 and NIPSNAP2 act as "eat me" signals to allow sustained recruitment of autophagy receptors during mitophagy [J]. Autophagy, 2019, 15(10): 1845-7.
- [7] URBAŃSKA K, ORZECHOWSKI A. Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells [J]. Int J Mol Sci, 2019, 20(9): 2085.
- [8] NEWINGTON J T, RAPPON T, ALBERS S, et al. Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid β and other toxins by decreasing mitochondrial respiration and reactive oxygen species production [J]. J Biol Chem, 2012, 287(44): 37245-58.
- [9] 彭光泉, 韩秀, 陈曦, 等. 敲低LDHA抑制脑胶质瘤细胞生长和EMT的研究. 中国细胞生物学学报(PENG G Q, HAN X, CHEN X, et al. Knockdown of LDHA inhibits growth and EMT of glioma cells [J]. Chinese Journal of Cell Biology), 2017, 39(10): 1288-95.
- [10] KOPPENOL W H, BOUNDS P L, DANG C V. Otto Warburg's contributions to current concepts of cancer metabolism [J]. Nat Rev Cancer, 2011, 11(5): 325-37.
- [11] LV X B, LIU L, CHENG C, et al. SUN2 exerts tumor suppressor

functions by suppressing the warburg effect in lung cancer [J]. Sci Rep, 2015, 5: 17940.

- [12] MOHAMMAD G H, OLDE DAMINK S W, MALAGO M, et al. Pyruvate kinase M2 and lactate dehydrogenase A are overexpressed in pancreatic cancer and correlate with poor outcome [J]. PLoS One, 2016, 11(3): e0151635.
- [13] HUANG X, LI X, XIE X, et al. High expressions of LDHA and AMPK as prognostic biomarkers for breast cancer [J]. Breast, 2016, 30: 39-46.
- [14] KOUKOURAKIS M I, GIATROMANOLAKI A, PANTELIAD-OU M, et al. Lactate dehydrogenase 5 isoenzyme overexpression defines resistance of prostate cancer to radiotherapy [J]. Br J Cancer, 2014, 110(9): 2217-23.
- [15] BOUDREAU A, PURKEY H E, HITZ A, et al. Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition [J]. Nat Chem Biol, 2016, 12(10): 779-86.
- [16] KULIKOV A V, LUCHKINA E A, GOGVADZE V, et al. Mitophagy: link to cancer development and therapy [J]. Biochem Biophys Res Commun, 2017, 482(3): 432-9.
- [17] KOYANO F, OKATSU K, KOSAKO H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin [J]. Nature, 2014, 510(7503): 162-6.
- [18] ESTEBAN-MARTÍNEZ L, BOYA P. BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming [J]. Autophagy, 2018; 14(5): 915-7.
- [19] HERZIG S, SHAW R J. AMPK: guardian of metabolism and mitochondrial homeostasis [J]. Nat Rev Mol Cell Biol, 2018, 19(2): 121-35.
- [20] WOLFF N C, VEGA-RUBIN-DE-CELIS S, XIE X J, et al. Celltype-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia [J]. Mol Cell Biol, 2011, 31(9): 1870-84.
- [21] AGARWAL S, BELL C M, ROTHBART S B, et al. AMPactivated protein kinase (AMPK) control of mTORC1 is p53and TSC2-independent in pemetrexed-treated carcinoma cells [J]. J Biol Chem, 2015, 290(46): 27473-86.
- [22] YU Y, LIAO M, LIU R, et al. Overexpression of lactate dehydrogenase-A in human intrahepatic cholangiocarcinoma: its implication for treatment [J]. World J Surg Oncol, 2014, 12: 78.
- [23] ZHAI N, WANG H, CHEN Y, et al. Taurine attenuates OTApromoted PCV2 replication through blocking ROS-dependent autophagy via inhibiting AMPK/mTOR signaling pathway [J]. Chem Biol Interact, 2018, 296: 220-8.
- [24] SCHIEKE S M, PHILLIPS D, MCCOY J P JR, et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity [J]. J Biol Chem, 2006, 281(37): 27643-52.